
- •4.Дополнительные методы микроскопирования: ультрафиолетовый, флюоресцентный, фазово-контрастный.
- •5.Понятие о клетке, как живой элементарной системе, основе строения и функции эукариотических организмов:
- •6.Основные положения клеточной теории на современном этапе развития науки:
- •7.Плазмолемма: строение, химический состав, функции:
- •10.Общий план эукариотической клетки:
- •11. Структурно-функциональная характеристика органелл, участвующих в энергопроизводстве:
- •12.Структурно-функциональная характеристика органелл, участвующих во внутриклеточном пищеварении, защитных и обезвреживающих реакциях:
- •13.Структурная, химическая и функциональная характеристика органелл, составляющих цитоскелет клеток Строение и значение центриолей, ресничек и жгутиков:
- •14. Понятие о компартментализации клетки и ее функциональное значение. Лизосомы. Строение, химический состав, функции. Понятие о первичных и вторичных лизосомах, об аутофагосомах и гетерофагосомах:
- •15. Вклад Пуркинье, Шванна, Вирхова и др. В учение о клетке:
- •16.Структурно-функциональная характеристика органелл, участвующих в процессах синтеза и секреции веществ из клеток:
- •18. Ядро: строение, функции, химический состав. Взаимодействие структур ядра и цитоплазмы в процессе синтеза белка в клетках. Основные этапы синтеза белка:
- •20.Клеточный цикл. Репродукция клеток. Способы воспроизведения клеток, их структурная характеристика. Эндорепродукция. Полиплоидия. Функциональное значение:
- •22.Воспроизведение клеток и его виды. Митоз. Преобразование структурных компонентов клетки на различных этапах митоза. Роль клеточного центра в митозе. Морфология и виды митотических хромосом:
- •23. Мейоз, его характеристика и биологическое значение:
- •24.Внутриклеточная регенерация Некроз, апоптоз:
- •27. Оплодотворение. Биологическое значение оплодотворения. Этапы оплодотворения. Слияние пронуклеусов. Условия, необходимые для нормального оплодотворения.
- •3.Этапы оплодотворения:
- •29. Этапы эмбрионального развития. Понятие дробления зародыша. Типы дробления. Характеристика дробления зиготы млекопитающих. Типы бластул. Строение зародыша на стадии имплантации у человека.
- •3.Типы дробления:
- •30.Строение зародыша на разных стадиях дробления. Морула. Бластоциста. Эмбриобласт и трофобласт. Имплантация. Ее механизмы. Этапы имплантации. Особенности имплантации у человека:
- •31. Основные стадии эмбриогенеза. Характеристика и значение процесса гаструляции. Типы гаструляции. Особенности образования зародышевых листков у разных организмов:
- •32. Основные этапы эмбрионального развития. Механизмы развития Понятия детерминации и дифференцировки. Морфологическое проявление этих процессов в клетках различных тканей:
- •33. Основные стадии эмбриогенеза. Понятие и механизмы гаструляции. Типы гаструляции у различных животных. Характеристика гаструляции у человека.
- •37. Образование, строение, функции провизорных органов: амниона, желчного мешка, аллантоиса, плаценты у млекопитающих. Особенности их образования у человека.
7.Плазмолемма: строение, химический состав, функции:
Плазмолемма (plasmalemma), или внешняя клеточная мембрана, среди различных клеточных мембран занимает особое место. Это поверхностная периферическая структура, не только ограничивающая клетку снаружи, но и обеспечивающая ее непосредственную связь с внеклеточной средой, а следовательно, и со всеми веществами и стимулами, воздействующими на клетку. Химический состав плазмолеммы. Основу плазмолеммы составляет липопротеиновый комплекс. Она имеет толщину около 10 нм и, таким образом,является самой толстой из клеточных мембран. Основу строения плазмолеммы составляет двойной слой липидных молекул билипидная мембрана, в которую местами включены молекулы белков, также имеется надмембранный слой гликокаликс, структурно связанный с белками и липидами билипидной мембраны, и в некоторых клетках имеется подмембранный слой.
Строение билипидной мембраны:Каждый монослой ее образован в основном молекулами фосфолипидов и, частично, холестерина. При этом в каждой липидной молекуле различают две части: гидрофильную головку и гидрофобные хвосты. Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки билипидного слоя соприкасаются с внешней или внутренней средой. Билипидная мембрана, а точнее ее глубокий гидрофобный слой, выполняет барьерную функцию, препятствуя проникновению воды и растворенных в ней веществ, а также крупных молекул и частиц.
Белковые молекулы встроены в билипидный слой мембраны локально и не образуют сплошного слоя.
По локализации в мембране белки подразделяются на:
интегральные пронизывают всю толщу билипидного слоя;
полуинтегральные включающиеся только в монослой липидов (наружный или внутренний);
прилежащие к мембране, но не встроенные в нее.
Функции плазмолеммы. Эта мембрана выполняет ряд важнейших клеточных функций, ведущими из которых являются функция р а з г р а н и ч е н и я цитоплазмы с внешней средой, функции р е ц е п ц и и и т р а н с п о р т а различных веществ как внутрь клетки, так и из нее.
По выполняемой функции белки плазмолеммы подразделяются на:
структурные белки;
транспортные белки;
рецепторные белки;
ферментные.
Находящиеся на внешней поверхности плазмолеммы белки, в также гидрофильные головки липидов обычно связаны цепочками углеводов и образуют сложные полимерные молекулы гликопротеиды и гликолипиды. Именно эти макромолекулы и составляют надмембранный слой — гликокаликс. В неделящейся клетке имеется подмембранный слой, образованный микротрубочками и микрофиламентами.
Значительная часть поверхностных гликопротеидов и гликолипидов выполняют в норме рецепторные функции, воспринимают гормоны и другие биологически активные вещества. Такие клеточные рецепторы передают воспринимаемые сигналы на внутриклеточные ферментные системы, усиливая или угнетая обмен веществ и тем самым оказывают влияние на функции клеток. Клеточные рецепторы, а возможно и другие мембранные белки, благодаря своей химической и пространственной специфичности, придают специфичность данному типу клеток данного организма и составляюттрансплантационные антигеныилиантигены гистосовместимости.
Помимо барьерной функции, предохраняющей внутреннюю среду клетки, плазмолемма выполняет транспортные функции, обеспечивающие обмен клетки с окружающей средой.
Различают следующие способы транспорта веществ:
пассивный транспорт способ диффузии веществ через плазмолемму (ионов, некоторых низкомолекулярных веществ) без затраты энергии;
активный транспорт веществ с помощью белков-переносчиков с затратой энергии (аминокислот, нуклеотидов и других);
везикулярный транспорт через посредство везикул (пузырьков), который подразделяется на эндоцитоз транспорт веществ в клетку, и экзоцитозтранспорт веществ из клетки.
В свою очередь эндоцитоз подразделяется на:
фагоцитоз захват и перемещение в клетку крупных частиц (клеток или фрагментов, бактерий, макромолекул и так далее);
пиноцитоз перенос воды и небольших молекул.
Процесс фагоцитоза подразделяется несколько фаз:
адгезия (прилипание) объекта к цитолемме фагоцитирующей клетки;
поглощение объекта путем образования вначале углубления (инвагинации), а затем и образования пузырьков — фагосомы и передвижения ее в гиалоплазму
Характеристика надмембранного слоя (гликокаликса) : сложные полимерные макромолекулы, образованные цепочками углеводов, связанными с находящимися на внешней поверхности плазмолеммы белками и гидрофильными головками липидов. Значительная часть поверхностных гликопротеидов и гликолипидов выполняет в норме рецепторные функции. Характеристика подмембранного слоя клеточной оболочки: Образован периферическим (кортикальным) слоем цитоплазмы и содержащимися в нём элементами цитоскелета клетки, включающим актиновые микрофиламенты, промежуточные филаменты и микротрубочки. Сокращение сети микрофиламентов, связанных с белками плазмолеммы, способствует формированию псевдоподий и выростов цитоплазмы, перемещению клетки в пространстве.
8.Функциональная и структурная характеристика различных видов соединений. Простые соединения. Сложные соединения: плотные, соединения, щелевые соединения (нексусы), промежуточные соединения, десмосомы, пальцевидные соединения.
Межклеточные соединения делятся на п р о с т ы е и с л о ж н ы е . Простое межклеточное соединение— сближение плазмолемм соседних клеток на расстояние 15—20 нм (рис. 8). При этом происходит взаимодействие слоев гликокаликса соседних клеток. Гликопротеиды соседних клеток при образовании простого контакта «узнают» клетки одного типа. Наличие этих белков-рецепторов (кадгерины, интегрины и др.) характерно для определенных тканей. Они реагируют только с соответствующими им клетками.
Пальцевидные соединения (интердигитации) образуются за счет взаимной инвагинации (впячивания) обеих плазмолемм в начале в одном, а затем в другом. Это один из трех видов контактов между кардиомиоцитами.
Сложные межклеточные соединения представляют собой небольшие парные специализированные участки плазматических мембран двух соседних клеток. Они подразделяются на запирающие (изолирующие), сцепляющие (заякоривающие) и коммуникационные (объединяющие) контакты. К з а п и р а ю щ и м (изолирующим) относится плотный контакт . В этом соединении принимают участие специальные интегральные белки, расположенные на поверхности соседних клеток, образующие подобие ячеистой сети.Эта ячеистая сеть окружает в виде пояска весь периметр клетки, соединяясь с такой же сетью на поверхности соседних клеток. Эта область непроницаема для макромолекул и ионов и, следовательно, она запирает, отграничивает межклеточные щели (и вместе с ними собственно внутреннюю среду организма) от внешней среды. Этот тип соединений характерен для клеток однослойных эпителиев и эндотелия. К с ц е п л я ю щ и м , или заякоривающим, соединениям относятся адгезивный (сцепляющий) поясок и десмосомы. Общим для этой группы соединений является то, что к участкам плазматических мембран со стороны цитоплазмы подходят фибриллярные элементы цитоскелета, которые как бы заякориваются на их поверхности. Адгезивный поясок(промежуточный контакт)-опоясывает апикальную часть клетки однослойных эпителиев.Клетки связаны интегральными гликопротеидами,к которым примыкает слой примембранных белков.
Факальный контакт характерен для фибробластов.Соединяется не с соседней клеткой,а с элементами внеклеточного субстрата.В образовании этого контакта участвуют микрофиламенты.
Десмосомы-парные структуры,диаметр-0,5 мкм.Прилежит слой белков.В состав входят десмоплакины.С внешней стороны плазмолеммы соединяются с помощью десмоглеинов. Функция:механическая связь между клетками.(В клетках эпителиев,сердечных и гладких мышц)
Полудесмосомы-связь эпителиальных клеток с базалбной мембраной.
Коммуникационные соединения(щелевые контакты и синапсы):
Щелевые контакты(нексусы)- 0,5-3 мкм.В структуре плазмолемм соседних клеток располагаются коннексоны(Все ткани).Функция:перенос ионов и мелких молекул от клетки к клетке.
Синапсы-характерны для нервной ткани.Встречаются между двумя нейронами.Участки контактов двух клеток,специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому.