
- •Г лава 27 Теория атома водорода по Бору
- •§ 208. Модели атома Томсона и Реэерфорда
- •§ 209. Линейчатый спектр атома водорода
- •§ 210. Постулаты Бора
- •§ 211. Опыты Франка и Герца
- •§ 212. Спектр атома водорода по Бору
- •Глава 28 Элементы квантовой механики
- •§ 213. Корпускулярно-волновой дуализм свойств вещества
- •§ 214. Некоторые свойства волн да Бройля
- •§ 215. Соотношение неопределенностей
- •§ 216. Волновая функция и её статистический смысл
- •§ 217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- •§ 219. Движение свободной частицы
- •§ 220. Частица в одномерной прямоугольной «потенциальной ям*» с бесконечно высокими «стенками*
- •§ 221. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
- •§ 222. Линейный гармонический осциллятор • квантовой механике
- •Глава 29
- •§ 223. Атом водорода в квантовой механике
- •2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредин-гера (223.2) удовлетворяют собственные функции определяемые тремя
- •§ 225. Спин электрона. Спиновое квантовое число
- •§ 226. Принцип неразличимости тождественных частиц. Фермионы и бозоны
- •§ 227. Принцип Паули. Распределение электронов в атома по состояниям
- •§ 228. Периодическая система элементов Менделеева
- •§ 229. Рентгеновские спектры
- •§ 230. Молекулы: химические связи, понятие об энергетических уровнях
- •§ 231. Молекулярные спектры. Комбинационное рассеяние света
- •§ 232. Поглощение. Спонтанное и вынужденное излучения
- •§ 233. Оптические квантовые генераторы (лазеры) .
- •Глава 30 Элементы квантовой статистики
- •§ 234. Квантовая статистика. Фазовое пространство. Функция распределения
- •§ 235. Понятие о квантовой статистика Бозе — Эйнштейна и Ферми — Дирака
- •§ 236. Вырожденный электронный газ в металлах
- •§ 237. Понятие о квантовой теории теплоемкости. Фононы
- •§ 238. Выводы квантовой теории электропроводности металлов
- •§ 103) Дает, что а также аномально большие величины (порядка сотен
- •§ 239. Сверхпроводимость. Понятие об эффекте Джозефсона
- •Глава 31 Элементы физики твердого тела
- •§ 240. Понятие о зонной теории твердых тел
- •§ 241. Металлы, диэлектрики и полупроводники по зонной теории
- •§ 242. Собственная проводимость полупроводников
- •§ 243. Примесная проводимость полупроводников
- •§ 244. Фотопроводимость полупроводников
- •§ 245. Люминесценция твердых тел
- •§ 246. Контакт двух металлов по зонной теории
- •1. Контактная разность потенциалов зависит лишь от химического состава и температуры соприкасающихся металлов.
- •§ 247.. Термоэлектрические явления и их применение
- •§ 248. Выпрямление на контакте металл — полупроводник
- •§ 249. Контакт электронного и дырочного полупроводников
- •§ 250. Полупроводниковые диоды и триоды (транзисторы)
- •7 Элементы физики атомного ядра и элементарных частиц
- •Глава 32 Элементы физики атомного ядра
- •§ 251. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- •§ 252. Дефект массы и энергия связи ядра
- •§ 253. Спин ядра и его магнитный момент
- •§ 254. Ядерные силы. Модели ядра
- •§ 255. Радиоактивное излучение и его виды
- •§ 256. Закон радиоактивного распада. Правила смещения
- •§ 257. Закономерности а-раепада
- •§ 258. -Распад. Нейтрино
- •§ 259. Гамма-излучение и его свойства
- •§ 260. Резонансное поглощение -излучения (эффект Мeссбауэра**)
- •§ 261. Методы наблюдения и регистрации радиоактивных излучений и частиц
- •§ 262. Ядерные реакции и их основные типы
- •1) По роду участвующих в них частиц — реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, частиц); реакции под действием -квантов;
- •§263. Позитрон., -Распад. Электронный захват '-
- •§ 264. Открытие нейтрона. Ядерные реакции под действием
- •§ 265. Реакция деления ядра
- •§ 266. Цепная реакция деления
- •§ 267. Понятие о ядерной энергетике
- •§ 268. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- •1) Протонно-протонный, или водородный, цикл, характерный для температур (примерно 107 к):
- •2) Углеродно-азотный, или углеродный, цикл, характерный для более высоких температур (примерно 2• 107 к):
- •Глава 33 Элементы физики элементарных частиц
- •§ 269. Космическое излучение
- •§ 270. Мюоны и их свойства
- •§ 271. Мезоны и их свойства
- •§ 272. Типы взаимодействий элементарных частиц
- •§ 273. Частицы и античастицы
- •§ 274. Гипероны. Странность и четность элементарных частиц
- •§ 275. Классификация элементарных частиц. Кварки
§ 241. Металлы, диэлектрики и полупроводники по зонной теории
Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон.
Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующих атомных уровней. Если при этом какой-то энергетический уровень полностью заполнен, то образующаяся энергетическая зона также заполнена целиком. В общем случае можно говорить о валентной зове, которая полностью заполнена электронами и образована из энергетических уровней внутренних электронов свободных атомов, и о зоне проводимости (свободной зоне), которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внешних «коллективизированных» электронов изолированных атомов.
В зависимости от степени
заполнения зон электронами и ширины
запрещенной зоны возможны четыре
случая, изображенные на рис. 314. На рис.
314, а самая
верхняя зона, содержащая электроны,
заполнена лишь частично, т. е. в ней
имеются вакантные уровни. В данном
случае электрон, получив сколь угодно
малую энергетическую «добавку»
(например, за счет теплового движения
или электрического поля), сможет перейти
на более высокий энергетический уровень
той же зоны, т. е. стать свободным и
участвовать в проводимости. Внутризонный
переход вполне возможен, так как,
например, при 1 К энергия теплового
движения
эВ,
т. е. гораздо больше
разности энергий между соседними уровнями зоны (примерно 10~23 эВ). Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам.
Твердое тело является проводником электрического тока и в том случае, когда валентная зона перекрывается свободной зоной, что в конечном счете приводит к не полностью заполненной зоне (рис. 314, б). Это имеет место для щелочно-земельных элементов, образующих II группу таблицы Менделеева (Be, Mg, Ca, Zn, ...). В данном случае образуется так называемая «гибридная» зона, которая заполняется валентными электронами лишь частично. Следовательно, в данном случае металлические свойства щелочно-земельных элементов обусловлены перекрытием валентной и свободной зон.
Помимо рассмотренного
выше перекрытия зон возможно также
перераспределение электронов между
зонами, возникающими из уровней различных
атомов, которое может привести к тому
что вместо двух частично заполненных
зон в кристалле окажутся одна полностью
заполненная (валентная) зона и одна
свободная зона (зона проводимости).
Твердые тела, у которых энергетический
спектр электронных состояний состоит
только из валентной зоны и зоны
проводимости, являются диэлектриками
или полупроводниками в зависимости от
ширины запрещенной зоны
Если ширина запрещенной
зоны кристалла порядка нескольких
электрон-вольт, то тепловое движение
не может перебросить электроны из
валентной зоны в зону проводимости
и кристалл является диэлектриком,
оставаясь им при всех реальных
температурах (рис. 314, в). Если
запрещенная зона достаточно узка
(
порядка
1 эВ), то переброс электронов из валентной
зоны в зону проводимости может быть
осуществлен
4
сравнительно легко либо
путем теплового возбуждения, либо за
счет внешнего источника, способного
передать электронам энергию
и
кристалл является полупроводником
(рис. 314, г).
Различие между
металлами и диэлектриками
с точки зрения зонной
теории состоит в том,
что при О К в зоне проводимости металлов
имеются электроны,
а в зоне проводимости
диэлектриков они отсутствуют. Различие
же между диэлектриками и
полупроводниками
определяется шириной запрещенных зон:
для диэлектриков она довольно широка
(например, для NaСl
=6
эВ), для полупроводников — достаточно
узка (например, для германия
=0,72
эВ). При температурах, близких к 0 К,
полупроводники ведут себя как диэлектрики,
так как переброса электронов в
зону проводимости не
происходит. С повышением температуры
у полупроводников растет
число электронов,
которые вследствие теплового возбуждения
переходят в зону
проводимости, т. е.
электрическая проводимость
проводников в этом
случае увеличивается.