
- •4 Колебания и волны
- •§ 140. Гармоническиt колебания и их характеристики
- •§ 141. Механические гармонические колебания
- •§ 142. Гармонический осциллятор. Пружинный, физический и математический маятники
- •1. Пружинный маятник — это груз массой т, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы
- •§ 143. Свободные гармонические колебания в колебательном контуре
- •§ 144. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •§ 145. Сложение взаимно перпендикулярных колебаний
- •1) .В данном случае эллипс вырождается в отрезок прямой
- •2) В данном случае уравнение примет вид
- •§ 146. Дифференциальное уравнение свободных затухающих колебаний (механических и электромагнитных) и его решение. Автоколебания
- •§ 147. Дифференциальное уравнение вынужденных колебаний (механических и электромагнитных) и его решение
- •§ 148. Амплитуда и фаза вынужденных колебаний (механических и электромагнитных). Резонанс
- •§ 149. Переменный ток
- •2. Переменный ток, текущий через катушку индуктивностью
- •§ 150. Резонанс напряжений
- •§ 151. Резонанс токов
- •§ 152. Мощность, выделяемая в цепи переменного тока
- •Глава 19 Упругие волны
- •§ 153. Волновые процессы. Продольные и поперечные волны
- •§ 154. Уравнение бегущей волны. Фазовая скорость. Волновое уравнение
- •§ 155. Принцип суперпозиции. Групповая скорость
- •§ 156. Интерференция волн
- •§ 157. Стоячие волны
- •§ 158. Звуковые волны
- •§ 159. Эффект Доплера в акустике
- •2. Приемник приближается к источнику, а источник покоится, т. Е.
- •§ 160. Ультразвук и его применение
- •§ 161. Экспериментальное получение электромагнитных волн
- •§ 162. Дифференциальное уравнение электромагнитной волны
- •§ 163. Энергия электромагнитных волн. Импульс электромагнитного поля
- •§ 164. Излучение диполя. Применение электромагнитных волн
- •5 Оптика. Квантовая природа излучения г лава 21 Элементы геометрической и электронной оптики
- •§ 165. Основные законы оптики. Полное отражение
- •§ 166. Тонкие линзы. Изображение предметов с помощью линз
- •§ 167. Аберрации (погрешности) оптических систем
- •§ 168. Основные фотометрические величины и их единицы
- •§ 169. Элементы электронной оптики
- •§ 170. Развитие представлений о природе света
- •§ 171. Когерентность и монохроматичность световых волн
- •§ 172. Интерференция света
- •§ 173. Методы наблюдения интерференции света
- •§ 174. Интерференция света в тонких пленках
- •1. Полосы равного наклона (интерференция от плоскопараллельной пластинки). Из
- •§ 175. Применение интерференции света
- •Глава 23 Дифракция света
- •§ 176. Принцип Гюйгенса — Френеля
- •§ 177. Метод зон Френеля. Прямолинейное распространение света
- •§ 178. Дифракция Френеля на круглом отверстии и диске
- •§ 179. Дифракция Фраунгофера на одной щели
- •§ 180. Дифракция Фраунгофера на дифракционной решетке
- •§ 181. Пространственная решетка. Рассеяние света
- •§ 182. Дифракция на пространственной решетке. Формула Вульфа — Брэггов
- •§ 183. Разрешающая способность оптических приборов
- •§ 184. Понятие о голографии
- •Глава 24
- •§ 185. Дисперсия света
- •§ 186. Электронная теория дисперсии света
- •§ 187. Поглощение (абсорбция) света
- •§ 188. Эффект Доплера
- •§ 189. Излучение Вавилова — Черенкова
- •Глава 25 Поляризация света
- •§ 190. Естественный и поляризованный свет
- •§ 191. Поляризация света при отражении и преломлении на границе двух диэлектриков
- •§ 192. Двойное лучепреломление
- •§ 193. Поляризационные призмы и поляроиды
- •§ 194. Анализ поляризованного света
- •§ 195. Искусственная оптическая анизотропия
- •§ 196. Вращение плоскости поляризации
- •Глава 26 Квантовая природа излучения
- •§ 197. Тепловое излучение и его характеристики
- •§ 198. Закон Кирхгофа
- •§ 199. Законы Стефана — Больцмана и смещения Вина
- •§ 200. Формулы Рэлея — Джинса и Планка
- •§ 201. Оптическая пирометрия. Тепловые источники света
- •§ 202. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •§ 203. Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света
- •§ 204. Применение фотоэффекта
- •§ 205. Масса и импульс фотона. Давление света
- •§ 206. Эффект Комптона и его элементарная теория
- •§ 207. Единство корпускулярных и волновых свойств электромагнитного излучения
§ 143. Свободные гармонические колебания в колебательном контуре
Среди различных электрических явлений особое место занимают электромагнитные колебания, при которых электрические величины (заряды, токи) периодически изменяются и которые сопровождаются взаимными превращениями электрического и магнитного полей. Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур — цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R.
Рассмотрим
последовательные стадии колебательного
процесса в идеализированном
контуре, сопротивление которого
пренебрежимо мало
Для
возбуждения в
контуре колебаний конденсатор
предварительно заряжают, сообщая его
обкладкам заряды
Тогда
в начальный момент времени t—О
(рис.
202, а) между обкладками
конденсатора
возникнет электрическое поле, энергия
которого
(см.
(95.4)). Если
замкнуть
конденсатор на катушку индуктивности,
он начнет разряжаться, и в контуре
потечет возрастающий со временем ток
I.
В результате энергия электрического
поля будет
уменьшаться, а энергия магнитного поля
катушки (она равна
)
— воз-
растать.
Так
как
то,
согласно закону сохранения энергии,
полная энергия
так
как она на нагревание не расходуется.
Поэтому в момент
когда
конден-
сатор полностью разрядится, энергия электрического поля обращается в нуль, а энергия магнитного поля (а следовательно, и ток) достигает наибольшего значения (рис. 202, б). Начиная с этого момента ток в контуре будет убывать; следовательно, начнет ослабевать магнитное поле катушки, и в ней индуцируется ток, который течет (согласно правилу Ленца) в том же направлении, что и ток разрядки конденсатора. Конденсатор начнет перезаряжаться, возникнет электрическое поле, стремящееся ослабить ток, который в конце концов обратится в нуль, а заряд на обкладках конденсатора
261
достигнет
максимума (рис. 202, в). Далее те же процессы
начнут протекать в обратном направлении
(рис. 202, г)
и
система к моменту времени
придет
в первоначальное состояние
(рис. 202, а).
После
этого начнется повторение рассмотренного
цикла разрядки и зарядки конденсатора.
Если бы потерь энергии не было, то в
контуре совершались бы
периодические незатухающие колебания,
т. е. периодически изменялись (колебались)
бы заряд Q
на
обкладках конденсатора, напряжение U
на
конденсаторе и сила тока
I,
текущего через катушку индуктивности.
Следовательно, в контуре возникают
электрические
колебания, причем колебания сопровождаются
превращениями энергий электрического
и магнитного полей.
Электрические
колебания в колебательном контуре можно
сопоставить с механическими колебаниями
маятника (рис. 202 внизу), сопровождающимися
взаимными превращениями
потенциальной и кинетической энергий
маятника. В данном случае энергия
электрического поля конденсатора
аналогична
потенциальной энер-
гии
маятника, энергия магнитного поля
катушки
—
кинетической энергии, сила
тока в контуре — скорости движения маятника. Индуктивность L играет роль массы т, а сопротивление контура — роль силы трения, действующей на маятник.
Согласно закону Ома, для контура, содержащего катушку индуктивностью L, конденсатор емкостью С и резистор сопротивлением R,
В
данном колебательном контуре внешние
э.д.с. отсутствуют, поэтому рассмат-
262
риваемые колебания представляют собой свободные колебания (см. § 140). Если сопротивление R=0, то свободные электромагнитные колебания в контуре являются гармоническими. Тогда из (143.2) получим дифференциальное уравнение свободных гармонических колебаний заряда в контуре:
Из выражений (142.1) и (140.1) вытекает, что заряд Q совершает гармонические колебания по закону
где
—
амплитуда колебаний заряда конденсатора
с циклической частотой
называемой
собственной
частотой контура, т.
е.
и периодом
Формула (143.5) впервые было получена У. Томсоном и называется формулой Томсона. Сила тока в колебательном контуре (см. (140.4))
где
—
амплитуда силы тока. Напряжение на
конденсаторе
где
—
амплитуда напряжения.
Из
выражений (143.3) и (143.6) вытекает, что
колебания тока / опережают по фазе
колебания
заряда Q
на
т.
е., когда ток достигает максимального
значения, заряд (а
также и напряжение (см. (143.7)) обращается
в нуль, и наоборот.