Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Тема 9. Освоение нефтяных и газовых скважин

.pdf
Скачиваний:
17
Добавлен:
16.01.2021
Размер:
330.05 Кб
Скачать

СПБГУАП группа 4736 https://new.guap.ru

Тема 11. Освоение нефтяных и газовых скважин.

План: 1. Подготовка скважин к освоению.

2.Вторичное вскрытие продуктивного пласта перфорацией.

3.Виды перфорации и их эффективность.

1.Подготовка скважин к освоению.

ПРИМЕНЕНИЕ ГАЗООБРАЗНЫХ АГЕНТОВ ДЛЯ ОСВОЕНИЯ СКВАЖИН. ОСВОЕНИЕ СКВАЖИН АЗОТОМ

Применение газообразных агентов — наиболее перспективное направление развития методов снижения уровня в скважинах. При этом способе освоения обеспечиваются простота и надежность контроля и регулирования процесса в широких пределах расходов

идавлений. Газообразные агенты могут обеспечивать быстрое опорожнение глубоких скважин, быстрое и резкое или медленное и плавное снижение давления в скважине, дренирование пласта с подпиткой сжатым газом для обеспечения фонтанирования и др.

Сначала в качестве газообразных агентов повсеместно применяли воздух. Однако практикой освоения и исследования скважин выявлены серьезные недостатки при использовании передвижных воздушных компрессоров. Закачка воздуха в скважину с помощью последних часто приводит к взрывам, которые, как правило, сопровождаются травмированием людей, создают условия для открытого фонтанирования скважин, причиняют значительный материальный ущерб народному хозяйству. После аварий многие скважины обычно ликвидируются из-за невозможности их восстановления.

Основная причина аварий — нарушение технологии работ (закрытие скважины со сжатым воздухом на длительное время и последующий спуск или подъем глубинных приборов в ней, зажигание факела при продувке скважины воздухом); 30 % аварий — результат выпуска газовоздушной смеси из скважины в атмосферу или перепуска ее из скважины в замкнутую полость в устьевом оборудовании (лубрикатор, манифольдная линия) от разряда статического электричества и ударной волны сжатия. Аварии возникали также в связи с нарушением технологии вызова притока — закрытия скважины со сжатым воздухом на длительное время, приводящего к образованию взрывчатой смеси в больших объемах и под высоким давлением.

Для устранения этой группы аварий необходимо сразу же после окончания закачки удалить воздух из скважины. Поскольку определенное количество взрывчатой смеси образуется в процессе закачки воздуха, удалять ее из скважины следует через специальное устройство в целях исключения возможности воспламенения от разряда статического электричества, ударного сжатия и открытого огня.

Более 50 % аварий происходило в процессе закачки воздуха в скважину в результате самовозгорания нагаромасляных отложений в коммуникациях компрессора, а также самовозгорания пирофорных соединений сульфидов железа в оборудовании скважины.

Образование нагаромасляных отложений и их самовозгорание обусловливаются применением некачественного компрессорного масла, нарушением правил эксплуатации

иобслуживания компрессоров, а также недостатками самих компрессоров (отсутствие холодильника и маслоотделителя после четвертой ступени сжатия). В связи с этим практически полное устранение этой группы аварий не представляется возможным. В скважинах, в которых вследствие сероводородной коррозии образуются пирофорные отложения, опасность взрыва при обработке компрессором еще более усугубляется.

Следовательно, применение способа вызова притока жидкости из нефтяных скважин с помощью передвижных воздушных компрессоров не отвечает требованиям охраны труда и охраны природы. Отсюда возникает необходимость отказаться от этого способа и перейти к безопасных методам вызова притока жидкости с использованием в качестве рабочего агента инертных газов, в частности азота. До внедрения безопасных способов освоения скважин с помощью инертных газов можно допустить освоение воздушной пеной с использованием передвижного компрессора.

СПБГУАП группа 4736 https://new.guap.ru

Опыт объединения «Укрнефть» показывает, что технические и технологические вопросы, связанные с переходом на освоение скважин с помощью азота, в принципе решены. В качестве транспортного и технологического оборудования предложена выпускаемая Одесским заводом установка АГУ-8К, применяемая в химической промышленности для транспортирования и газификации жидкого азота.

Применение азотных газификационных установок предусматривается при освоении скважин, содержащих сероводород, в условиях малопроницаемых коллекторов и низких пластовых давлений, в зоне влияния подземного горения и других случаях, где существующие методы освоения мало-эффективны и не обеспечивают взрывобезопасности работ, а также при освоении скважин в суровых климатических условиях при температурах окружающего воздуха от — 30 до + 50 °С.

Технология вызова притока нефти и газа из пласта с использованием передвижных азотных газификационных установок заключается в том, что газообразный азот или газированная им жидкость (пена) нагнетаются в скважину и замещают находящуюся в ней жидкость (буровой раствор, воду или нефть). В результате регулирования плотности закачиваемой в скважину системы и использования упругих свойств газа и пены по мере их удаления из скважины противодавление на пласт можно снизить в необходимых пределах.

Область применения различных азотосодержащих циркуляционных агентов (газообразного азота, газированной им жидкости — пены) для вызова притока нефти и газа из пласта зависит от геолого-технических и других условий освоения скважин.

Для создания глубоких депрессий на пласт, вплоть до осушения глубоких скважин (если это допустимо), при плавном темпе снижения забойного давления целесообразно комбинированное применение азотосодержащих систем: последовательная в один цикл и более промывка скважин газированной азотом жидкостью (пеной), которая при необходимости может быть вытеснена из скважины азотом.

2. Вторичное вскрытие продуктивного пласта перфорацией.

Вскрытие продуктивных пластов проводят дважды: первичное — в процессе бурения, вторичное — перфорацией после крепления скважины эксплуатационной колонной. Вскрытие пласта перфорацией в обсаженных скважинах — одна из наиболее важных операций при их строительстве, поскольку от нее зависит дальнейший успех испытания, получения притока пластового флюида и освоения скважины как объекта эксплуатации.

ПЕРФОРАЦИЯ ПРИ ДЕПРЕССИИ НА ПЛАСТ Эта перфорация — наиболее прогрессивный способ вторичного вскрытия пласта, так

как в момент создания перфорационных каналов по,а воздействием больших градиентов давлений возникает интенсивный приток нефти или газа из пласта в скважину, вследствие чего происходит самоочищение перфорационных каналов и породы в призабойной зоне. Одновременно процесс вторичного вскрытия пластов совмещается с процессом вызова притока нефти или газа. Эту перфорацию в настоящее время осуществляют по двум вариантам.

По первому варианту применяют перфораторы типа КПРУ65, ПР54, ПР43. До спуска перфоратора скважину оборудуют колонной НКТ, а на устье монтируют фонтанную арматуру. На месте буферного патрубка устанавливают лубрикатор — устройство, позволяющее спускать и поднимать в работающей скважине любые приборы при наличии давления на устье.

Путем снижения уровня раствора в скважине, замены на более легкий раствор, полного удаления раствора из скважины и заполнения ее воздухом, природным газом или азотом создается необходимый перепад между пластовым и забойным давлениями. В скважину через лубрикатор необходимой длины (максимальное число кумулятивных зарядов, спускаемых одновременно, не должно превышать 300) на каротажном кабеле

СПБГУАП группа 4736 https://new.guap.ru

спускают малогабаритный перфоратор с установкой его напротив интервала, который надо перфорировать. После срабатывания перфоратора пласт начинает сразу же себя проявлять, происходит интенсивный процесс очищения перфорационных каналов и породы пласта вокруг скважины. В высокопродуктивных нефтяных и особенно в газовых добывающих скважинах по мере заполнения ствола скважины пластовым флюидом наблюдается интенсивный рост давления на устье. Конструкция лубрикатора позволяет вывести каротажный кабель из скважины, а при необходимости его можно опять спустить в скважину для дострела необходимого интервала.

При использовании малогабаритных перфораторов кумулятивной струе приходится преодолеть большое расстояние до удара с перегородкой — обсадной колонной, причем известно, что длина канала зависит и от толщины слоя жидкости. Поэтому наибольший эффект получают от применения таких перфораторов в газовой среде.

Так, на месторождениях Северного Кавказа вследствие вскрытия при депрессии в газовой среде перфораторами ПР54 обеспечивается увеличение дебитов скважин в 2 — 3 раза и сокращение времени освоения скважин в среднем на 8 сут по сравнению с вскрытием пластов при репрессии даже намного более мощными перфораторами типа ПК и ПКО.

По второму варианту перфорации используют перфораторы, спускаемые в скважину на НКТ. Это корпусные перфораторы одноразового действия типа ПКО, срабатывающие от механизма ударного действия при нажиме на него резинового шара, вбрасываемого в колонну труб с поверхности и дальше движущегося вниз под воздействием потока жидкости. Такие перфораторы имеют шифр ПНКТ89 и ПНКТ73. Эти перфораторы снабжены приспособлениями для передачи детонации от секции к секции, что позволяет соединять их друг с другом для одновременного вскрытия пласта толщиной 50 м и более. После срабатывания перфоратора и создания гидродинамической связи пласта и скважины отстрелянный корпус перфоратора остается в скважине, если она работает фонтанным способом.

Таким образом, перфорация осуществляется в следующем порядке. В скважину, заполненную промывочной жидкостью, спускают колонну НКТ, в нижней части которой напротив продуктивной части пласта размещен перфоратор ПНКТ.

Устье скважины оборудуют фонтанной арматурой на необходимое давление. Путем удаления части жидкости из скважины или замены ее на более легкую создают заранее выбранную депрессию на пласт, при этом давление на

забое должно быть не менее 5 МПа. Через устьевую задвижку внутрь НКТ бросают резиновый шар, который потоком жидкости, подаваемой в трубы, движется в НКТ до механизма ударного действия, от которого срабатывает приспособление инициации зарядов. После перфорации нефть или газ из пласта поступает в колонну НКТ через отверстия в корпусе ПНКТ, образовавшиеся после срабатывания зарядов, или через специальные циркуляционные окна, размещенные выше перфоратора.

Эти перфораторы являются единственными, для спуска которых в скважину не используется кабель. Их целесообразно применять в скважинах с большим углом наклона ствола, где спуск перфоратора на кабеле затруднен. В частности, в горизонтальных скважинах это один из наиболее реальных и эффективных методов перфорации. Эти перфораторы очень эффективны и в том случае, когда надо выполнять вторичное вскрытие в условиях многоколонных конструкций, где требуется повышенная пробивная способность зарядов.

3. Виды перфорации и их эффективность.

ПУЛЕВАЯ ПЕРФОРАЦИЯ Пулевые перфораторы представляют собой короткоствольные пушечные системы, в

которых пули разгоняются по стволу благодаря энергии расширения пороховых газов и, получив достаточную кинетическую энергию на выходе из нее, пробивают препятствие.

СПБГУАП группа 4736 https://new.guap.ru

Новыми среди пулевых перфораторов являются перфораторы с вертикальнокриволинейными стволами типа ПВН, в которых пули разгоняются по стволам значительной длины, размещенным вдоль оси корпуса. При такой конструкции длина ствола увеличивается до 400 — 500 мм против 60 — 70 мм в перфораторах с горизонтальным размещением стволов, а скорость пули на выходе из дула достигает

900—1000 м/с.

Большее предпочтение пулевым перфораторам следует отдавать при вскрытии сыпучих пород. Поскольку воздействие пулевого перфоратора на обсадную колонну несколько больше кумулятивного корпусного, применение его нежелательно (при качественном цементировании обсадной колонны), при наличии близких водоносных горизонтов. Следует также учесть, что продуктивность работ с пулевыми перфораторами несколько ниже, чем с кумулятивными, так как за один спуск они могут вскрыть лишь до 2 — 3 м пласта с плотностью до пяти отверстий на 1 м.

КУМУЛЯТИВНАЯ ПЕРФОРАЦИЯ Механизм образования кумулятивной струи следующий. При взрыве вещества в

виде цилиндрического заряда происходит почти мгновенное превращение его в газоподобные продукты, которые разлетаются во все стороны в направлениях, перпендикулярных к поверхности заряда. Суть эффекта кумуляции в том, что газоподобные продукты детонации части заряда, называющиеся активной частью и движущиеся к оси заряда, концентрируются в мощный поток, который называется кумулятивной струей. Если углубление в заряде облицовано тонким слоем металла, то при детонации заряда вдоль ее оси образуется кумулятивная струя, состоящая не только из газоподобных продуктов, но и из размягченного металла, который выделяется из металлической облицовки.

Имея очень высокую скорость в главной части (6 — 8 км/с), при ударе о твердую перегородку струя развивает такое давление, под воздействием которого наиболее прочные материалы разрушаются. Для большинства зарядов давление кумулятивной струи на перегородку составляет 20 — 30 ГПа, в то время как граница прочности горных пород в 400 — 600 раз меньше.

Контрольные вопросы:

1.Рассскажите про освоении скважины азотом?

2.Что такое префорация?

3.Что представляет собой пулевая перфорация?

4.Что представляет собой кумулятивная перфорация?

Литература

1.Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Заканчивание скважин: Учеб. пособие для

вузов. — М: ООО «Недра-Бизнесцентр», 2000. — 670 с.

2.Баграмов Р.А. Буровые машины и комплексы: Учеб. для вузов. — М.: Недра,1988. —

501с.

3.Болденко Д.Ф., Болденко Ф.Д., Гноевых А.Н. Винтовые забойные двигатели. — М.:Недра,

1999. — 375 с

игазовых скважин: Учеб. для вузов. — М.: ООО «Недра-Бизнесцентр», 2000. —679 с.

4.Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Технология бурения нефтяных и газовых

скважин: Учеб. для вузов. — М.: ООО «Недра-Бизнесцентр», 2001. — 679 с.

5..Басарыгин Ю.М., Булатов А.И., Проселков Ю.М. Осложнения и аварии при бурении нефтяных

СПБГУАП группа 4736 https://new.guap.ru