Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3365

.pdf
Скачиваний:
4
Добавлен:
08.01.2021
Размер:
540.69 Кб
Скачать

Наибольшее распространение среди промышленно выпускаемых микробных патогенов получили бактериальные препараты. Их отличительными особенностями являются высокая вирулентность по отношению к насекомым-вредителям, безопасность для окружающей флоры и фауны, достаточно высокая скорость воздействия на вредителей и др. В настоящее время производятся препараты против более 160 видов насекомых.

Из всех энтомопатогенных бактерий наиболее исследованы грамположительные бактерии Bac.thuringiensis. Она не только разрушает насекомое, попадая внутрь, но и продуцирует ряд токсичных продуктов. Среди этих токсичных продуктов выделяют 4 компонента:

α-экзотоксин, или фосфолипаза С, – продукт растущих клеток бактерий. Токсическое действие фермента связывают с индуцируемым им распадом незаменимых фосфолипидов в ткани насекомого, что приводит к гибели последнего.

β-экзотоксин – накапливается в культуральной жидкости при росте клеток. Считают, что молекула β-токсина состоит из нуклеотида, связанного через рибозу и глюкозу с аллослизевой кислотой. Его действие, видимо, обусловлено ингибированием нуклеотидазы и ДНК-зависимой РНКполимеразы, связанных с АТФ, что приводит к прекращению синтеза РНК. По сравнению с другими токсинами действует медленнее, в основном при переходе от одного цикла развития к другому. По наблюдениям, β- экзотоксин - мутаген, поражающий генетический аппарат особей.

γ-экзотоксин – малоизученный компонент, неидентифицированный фермент (или группа ферментов).

δ-эндотоксин – параспоральный кристаллический эндотоксин. Образуется в процессе споруляции бактерии в противоположной от формирующейся споры части бактерии. На завершающей стадии спорообразования токсин приобретает форму 8-гранного кристалла. Кристаллы состоят из белка, аминокислотный состав которого близок для различных штаммов. Доказано, что кристаллический белок в кишечнике восприимчивых насекомых распадается на молекулы протоксина. Протоксин под действием протеиназ распадается на токсические фрагменты. Различие в восприимчивости некоторых видов насекомых к действию кристалла, по-видимому, связано с присутствием специальных кишечных протеаз, осуществляющих гидролиз кристаллов in vivo. Такими протеазами обладают не все насекомые, отсюда и избирательность действия δ-токсина. Чтобы насекомое погибло, кристаллы должны попасть в его организм. После поглощения кристаллов гусеницы перестают питаться. Первичным местом действия δ-токсина является средний отдел кишечника.

В зависимости от реакции на кристаллы насекомые делятся на три группы:

·характерен общий паралич;

·паралич среднего отдела кишечника;

·реакция на препарат в целом: гибель в результате прорастания спор и последующего размножения бактерий.

Наиболее распространенные препараты на основе различных вариаций Bac. thuringiensis: энтобактерин, инсектин, алестин, экзотоксин, токсобактерин, дендробациллин, битоксибациллин.

Промышленное производство энтомопатогенных бактерий (ЭБ) заключается в глубинном культивировании. При этом ставится задача получения максимального титра клеток в культуральной жидкости и накопления токсина. Требования к промышленным штаммам ЭБ: принадлежность штамма к определенному серотипу, высокая вирулентность и продуктивность на промышленных средах, устойчивость к комплексу фагов и т.д.

Технология производства включает все стадии, типичные для любого биотехнологического производства.

Составление питательной среды. Для культивирования Bac. thuringiensis

используют дрожже-полисахаридную среду, содержащую в процентах: кормовые дрожжи – 2 – 3; кукурузную муку – 1 – 1,5; кашалотовый жир – 1.

Подготовка посевного материала. Внесениение посевного материала.

Размножение культуры. Температуру культивирования на всех стадиях поддерживают постоянной (28 – 30 оС), продолжительность ферментации составляет 35 – 40 часов. Перед началом культивирования рН составляет около 6,3, к концу ферментации – повышается до 8,0 – 8,5, что может привести к разрушению кристаллов на более мелкие фрагменты и затруднить их выделение. Чтобы предотвратить это, культуральную жидкость перед переработкой подкисляют до 6,0 – 6,2. Культивирование заканчивают титре спор не менее 109 в 1 мл.

После сепарации культуральной жидкости получают пасту влажностью 85 % с выходом около 100 кг в 1 кубометре культуральной жидкости. Пасту перемешивают в течение получаса для однородного распределения спор и кристаллов и отбирают пробы на проверку титра, влажности, вирулентности, наличия фага.

Препарат предназначен для борьбы с садово-огородными вредителями, эффективен против 60 видов насекомых. Применяют путем опрыскивания растений водной эмульсией в период активного роста вредителя. Основная масса вредителей погибает в течение 2 – 10 дней. На 1 га расходуют: для овощных культур 1 – 3 кг, садовых – 3 – 5 кг.

Энтомопатогенные препараты на основе микроскопических грибов вызывают у насекомых микозы.

Грибы обладают рядом особенностей:

·поражение происходит через кутикулу;

·насекомые поражаются в фазе развития куколки и имаго;

·большая скорость роста и огромная репродуктивная способность, в виде спор могут длительное время находится в природе без снижения энтомопатогенной активности;

· высокая специфичность, вирулентность сильно зависит от штамма гриба. Действие грибного препарата на насекомое начинается с

проникновения споры в полость тела через кожные покровы. Попав в тело, спора прорастает в гифу, затем разрастается мицелий, от которого отчленяются конидии. Оказавшись в теле, конидии циркулируют в гемолимфе. Уже на этой стадии возможно поражение насекомого вследствие выделения некоторыми штаммами значительного количества токсинов. В отсутствие токсина мицелий постепенно заполняет все тело насекомого, прежде всего поражается мышечная ткань. Рост гриба продолжается до тех пор, пока все ткани не будут разрушены. Могут образовываться конидиеносцы, прорывающие кутикулу и обволакивающие мертвую личинку.

В промышленном производстве используются отдельные штаммы в основном трех родов: Beaveria, Metarrhizium, Entomophtora.

Технология получения препарата энтомопатогенных грибов боверина

методом глубинного культивирования включает обычные стадии. Составление питательной среды. Питательная среда содержит в процентах: дрожжи кормовые – 2; крахмал – 1; хлорид натрия – 0,2; хлорид марганца – 0,01; хлорид кальция – 0,05. Последний компонент обеспечивает устойчивость конидий к неблагоприятным факторам, поэтому его содержание может сильно варьировать (до 5 %).

Подготовка посевного материала. Внесениение посевного материала.

Размножение культуры ведут при рН 4,5 – 5,6, температуре 25 – 28 оС в течение 3 – 4 суток в условиях постоянного перемешивания и аэрации. В среде необходимо также наличие аминного азота, так как его недостаток снижает скорость роста культуры и процент образования конидиоспор, избыток ведет к образованию гонидий.

Культуральную жидкость подвергают сепарации и фильтрованию, после чего пасту сушат на распылительной сушке.

Готовый препарат – порошок кремового или белого цвета, содержащий в 1 г от 1,5 до 6 млрд. конидиоспор. Препарат безвреден для теплокровных животных и человека, не вызывет ожогов у растений.

Из всех энтомопатогенных препаратов вирусные обладают наибольшей специфичностью по отношению к насекомому-хозяину. Они поражают не более одного вида. Их ярко выраженная специфичность обуславливает практическую безвредность вирусных препаратов для человека, флоры и фауны.

Вирусы отличает высокая устойчивость к неблагоприятным факторам окружающей среды, они способны сохранять активность в течение 10 – 15 лет, находясь вне насекомого. Заражение вирусом происходит при питании вредителя. Попавшие в кишечник тельца-включения при щелочных значениях рН разрушаются. Освобожденные вирионы проникают через стенку кишечника в клетки, где в ядрах происходит репликация вирусов. Высвободившиеся вирусы заражают другие клетки, что в итоге приводит к

гибели насекомого. Отличительной особенностью вирусов является то, что они могут размножаться только в живой ткани. Это создает определенные трудности в организации промышленного производства, так как технология размножения вирусов должна быть связана с использованием живых насекомых-хозяев.

В нашей стране осуществляется выпуск трех вирусных энтомопатогенных препаратов: вирин-ЭКС (против капустной совки), ЭНШ (против непарного шелкопряда) и АББ (против американской белой бабочки).

Разведение насекомых. Производство любого из вирусных препаратов начинают с разведения насекомого-хозяина на искусственных питательных средах, обеспечивающих их физиологически здоровое состояние.

Получение инокулята. Инокулят предварительно получают от нескольких больных личинок.

Заражение насекомых. На определенной стадии развития (обычно на стадии гусеницы) насекомых заражают, добавляя вирусную суспензию к корму. Экспозиция насекомых. После заражения насекомых выдерживают в строго определенных условиях, обеспечивающих максимальное накопление вируса в тканях.

Отбор мертвых и отмирающих личинок. Через 7 – 9 суток собирают мертвые и отмирающие личинки, подсушивают при температуре 33 – 35 оС, измельчают механическим способом для вывода телец-включений из тканей.

Выделение вирусных компонентов. К полученной массе добавляют физиологический раствор или дистиллированную воду из расчета 1 мл на гусеницу, взвесь полученных тканей фильтруют.

При производстве вирин-ЭКС полиэдры осаждают из фильтрата центрифугированием. Осадок суспендируют в минимальном количестве дистиллированной воды и добавляют простерилизованный глицерин. Готовый препарат разливают во флаконы.

При производстве вирин-ЭНШ в фильтрат добавляют лактозу, а после перемешивания ацетон в соотношении 4:1 к объему суспензии. После отстаивания надосадочную жидкость сливают, осадок подсушивают до полного удаления ацетона. Если препарат планируется выпускать в виде порошка, то сухой осадок смешивают с мелкодисперсным наполнителем (каолином, например) до получения титра полиэдров 1 млрд. полиэдров в 1 грамме.

Масляную форму препарата получают путем диспергирования осадка в стерильном 50 % растворе глицерина до титра 2 млрд. полиэдров в 1 мл, а затем добавляют равный объем солярового масла, перемешивают и разливают по флаконам.

Вирусные энтомопатогенные препараты применяют путем внесения полиэдров в плотные популяции насекомых-вредителей с целью возникновения в них эпизоотий. Данный способ обработки предполагает внесение небольших количеств препарата. В другом случае опрыскивание

или опыление производят на зараженных участках в период рождения личинок или на ранних стадиях их развития.

Бактериальные удобрения — это препараты, способствующие улучшению питания растений. Питательных веществ они не содержат. Препараты, в которых содержатся полезные для сельскохозяйственных растений почвенные микроорганизмы. При внесении этих удобрений в почве усиливаются биохимические процессы и улучшается корневое питание растений.

Самыми распространенными бактериальными удобрениями являются:

нитрагин — препарат, содержащий клубеньковые бактерии, которые поставляют к растениям азот. Используется только для бобовых растений, причем для каждого вида культуры разный тип бактерий;

азотобактерин — препарат, содержащий азотобактерии, которые также поставляют азот. Однако эти существа универсальны и могут применяться на разных культурах;

фосфобактерин — препарат, содержащий фосфобактерии, соответственно, переносят к корням растений фосфор;

ЭМ-препарат (эффективные микроорганизмы) — содержит несколько видов микроорганизмов, которые вместе комплексно воздействуют на растения.

Все бактериальные удобрения вносятся в почву в очень малых количествах (несколько капель на 1 л дождевой воды).

Вносить такие удобрения следует, соблюдая ряд правил:

почва должна быть влажной;

раствор не должен попадать на побеги растений;

микроорганизмы не любят много света, поэтому препараты лучше вносить поздно вечером или в пасмурную погоду;

ослабленные по различным причинам растения (от вредителей, болезней) либо посаженные недавно не стоит удобрять таким образом, потому что они слишком слабы.

Так как бактериальные удобрения содержат живых существ, то хранение их должно быть особым: от заморозки и слишком высокой температуры бактерии погибнут. Данный вид удобрений не выдерживают длительного хранения, поэтому готовят их в количестве, необходимом лишь для одного сезона. Хранят в заводской таре в сухом помещении при температуре от 0 до 10 °C; нельзя хранить на складе, где находятся летучие ядохимикаты.

Фиксация атмосферного азота возможна только в клубеньках, образующихся на корнях растений. Возникают они при инфицировании корневой системы бактериями из рода Rhizobium. Заражение корневой системы происходит через молодые корневые волоски. После внедрения бактерии прорастают внутри них до самого основания в виде инфекционной нити. Выросшие нити проникают сквозь стенки эпидермиса в кору корня, разветвляются и распределяются по клетками коры. При этом индуцируется деление клеток хозяина и разрастание тканей. В месте локализации бактерий на корне

растения-хозяина образуются клубеньки, в которых бактерии быстро размножаются и располагаются по отдельности или группами в цитоплазме растительных клеток. Сами бактериальные клетки увеличиваются в несколько раз и меняют окраску. Если клубеньки имеют красноватую или розовую окраску, обусловленную наличием пигмента легоглобина (леггемоглобина) - аналог гемоглобина крови животных, то они способны фиксировать молекулярный азот. Неокрашенные ("пустые") или имеющие зеленоватую окраску клубеньки не фиксируют азот.

Бактерии, находящиеся в клубеньках, синтезируют ферментную систему с нитрогеназной активностью, восстанавливающую молекулярный азот до аммиака. Ассимиляция аммиака происходит, в основном, путем вовлечения его в ряд ферментативных превращений, приводящих к образованию глутамина и глутаминовой кислоты, идущих в дальнейшем на биосинтез белка.

Помимо критерия активности в характеристике клубеньковых бактерий используют критерий вирулентности. Он характеризует способность микроорганизма вступать в симбиоз с бобовым растением, то есть проникать через корневые волоски внутрь корня и вызывать образование клубеньков. Большое значение имеет скорость такого проникновения. В симбиотическом комплексе растение - Rhizobium бактерии обеспечиваются питательными веществами, а сами снабжают растение азотистым питанием. С вирулентностью связана и видовая избирательность, которая характеризует способность данного вида бактерий к симбиозу с определенным видом бобового растения. Классификация различных видов Rhizobium учитывает растение-хозяина, например: Rhizobium phaseoli - для фасоли, Rhizobium lupini - для люпина, сараделлы и т.д. Вирулентность и видоспецифичность взаимосвязаны и не являются постоянными свойствами штамма.

Задачей производства бактериальных удобрения является максимальное накопление жизнеспособных клеток, сохранение их жизнеспособности на всех стадиях технологического процесса, приготовление на их основе готовых форм препарата с сохранением активности в течение гарантийного срока хранения. Отечественная промышленность выпускает два вида нитрагина: почвенный и сухой. Впервые культура клубеньковых бактерий на почвенном субстрате была приготовлена в 1911 году на бактериально-агрономической станции в Москве. В настоящее время его производство имеет ограниченное значение, так как технология довольно сложна и трудоѐмка при выполнении отдельных операций. Более перспективна технология производства сухого нитрагина. Сухой нитрагин - порошок светло-серого цвета, содержащий в 1 г не менее 9 млрд. жизнеспособных бактерий в смеси с наполнителем. Влажность не превышает 5-7%. Промышленное производство имеет типичную схему. Необходимо отметить, что важно подбирать штаммы, устойчивые к высушиванию. Для производства посевного материала исходную культуру клубеньковых бактерий выращивают на агаризованной среде, содержащей отвар бобовых семян, 2% агара и 1% сахарозы, затем культуру размножают в

колбах на жидкой питательной среде в течение 1-2 суток при 28-30оС и рН 6.5-7.5. На всех этапах промышленного культивирования применяют питательную среду, включающую такие компоненты, как меласса, кукурузный экстракт, минеральные соли в виде сульфатов аммония и магния, мел, хлорид натрия и двузамещенный фосфат калия. Основная ферментация идет при тех же условиях в течение 2-3 суток. Готовую культуральную жидкость сепарируют, получается биомасса в виде пасты с влажностью 7080%. Пасту смешивают с защитной средой, содержащей тиомочевину и мелассу (1:20) и направляют на высушивание. Сушат путем сублимации ( в вакуум-сушильных шкафах). Высушенную биомассу размалывают. Производительнее высушивание в распылительных сушках, но при этом 75% клеток теряют жизнеспособность. Препараты сухого нитрагина фасуют и герметизируют в полиэтиленовые пакеты по 0.2 - 1 кг, хранят при температуре 15оС не более 6 месяцев. Семена опудривают перед посевом. Внесение нитрагина повышает урожайность в среднем на 15-25%.

Препарат клубеньковых бактерий может выпускаться и в виде ризоторфина. Впервые торфяной препарат клубеньковых бактерий был приготовлен в 30-х годах, но технология была создана в 1973-77 гг. Для приготовления ризоторфина торф сушат при температуре не выше 100оС и размалывают в порошок. Наиболее эффективным способом стерилизации является облучение его гамма-лучами. Перед стерилизацией размолотый, нейтрализованный мелом и увлажненный до 30-40% торф расфасовывают в полиэтиленовые пакеты. Затем его облучают и заражают клубеньковыми бактериями, используя шприц, с помощью которого впрыскивается питательная среда, содержащая клубеньковые бактерии. Прокол после внесения бактерий заклеивается липкой лентой. Каждый грамм ризоторфина должен содержать не менее 2.5 млрд. жизнеспособных клеток с высокой конкурентоспособностью и интенсивной азотфиксацией. Препарат хранят при температуре 5-6оС и влажности воздуха 40-55%. Пакеты могут быть весом от 0.2 до 1.0 кг. Доза препарата составляет 200 г на га. Заражение семян производят следующем образом: ризоторфин разбавляют водой и процеживают через двойной слой марли. Полученной суспензией обрабатывают семена. Семена высевают в день обработки или на следующий день.

Вопросы для самоконтроля

1.Назовите основные энтомопатогенные бактерии.

2.Какие группы токсичных продуктов энтомопатогенных бактерий вы знаете?

3.Перечислите энтомопатогенные препараты на основе микроскопических грибов.

4.Какие преимущества есть у Вирусных энтомопатогенных препаратов?

5.Какую функцию выполняют бактериальные удобрения?

6.Дайте характеристику основным бактериальным удобрениям, применяемым в нашей стране.

Тема 9 . Использование биотехнологии растений в сельском хозяйстве, селекции и растениеводстве

Главной задачей сельскохозяйственного производства является обеспечение населения страны в соответствии с медицинскими нормами качественными, биологически полноценными продуктами питания из сырья растительного и животного происхождения.

В геополитическом плане это обеспечение продовольственной независимости государства. Решение таких социально значимых задач объективно требует устойчивого экономического развития сельского хозяйства и всего агропромышленного комплекса страны, что напрямую связано с увеличением объемов производства сельскохозяйственной продукции, сырья и продовольствия, с урожайностью сельскохозяйственных культур и продуктивностью сельскохозяйственных животных и птиц. Таких показателей можно добиться при условии технологической модернизации и внедрения в аграрное производство новейших научных достижений в селекционной деятельности и племенном животноводстве. Принятые за последние годы органами государственной власти меры экономикоправового характера оказывают свое позитивное воздействие на развитие отечественного сельского хозяйства. Вместе с тем остаются реальные проблемы, связанные с качественными показателями в растениеводстве и животноводстве.

Несмотря на внедрение в производство новейших селекционных достижений, по-прежнему сохраняется большой разрыв между биологической урожайностью сельскохозяйственных культур и так называемым амбарным весом, то есть тем, что фактически находится на хранении после подработки (сушки, сортировки и т. д.).

Современная биотехнология растений - сумма технологий, которые развиты по молекулярной и клеточной биологии растений, - новая стадия в развитии технологии селекции растений. С помощью этих технологий улучшение признаков может происходить на уровне индивидуального гена, а отдельные гены, определяющие определенный признак, могут быть идентифицированы. За ними может быть проведен отбор, их можно изолировать, ввести, удалить или модифицировать в генотипе растения или в сорте. Вклад биотехнологии в сельскохозяйственное производство заключается в облегчении традиционных методов селекции растений, разработке новых технологий, позволяющих повысить эффективность сельского хозяйства. Методами генетической и клеточной инженерии созданы высокопродуктивные и устойчивые против вредителей, болезней, гербицидов сорта сельскохозяйственных растений. Разработано технику оздоровления растений от накопления инфекций, что особенно важно для культур, которые размножаются вегетативно (картофель и др.). Одной из

актуальных проблем является возможность управлять процессом азотфиксации, в том числе возможность введения генов азотфиксации в геном полезных растений, а также управления процессами фотосинтеза. Ведутся исследования по улучшению аминокислотного состава растительных белков, разрабатываются новые регуляторы роста растений, микробиологические средства защиты растений от вредителей и болезней, бактериальные удобрения. На современном этапе развития селекции для его интенсификации эффективное использование таких биотехнологических методов, как культура изолированных тканей, клеток и органов растений, клеточная селекция и генетическая инженерия, которые дают возможность за сравнительно короткие сроки создать и размножить ценный исходный высокопроизводительный материал, гетерозисных гибриды и сорта сельскохозяйственных растений.

Все проблемы, которые разрабатывают в культуре in vitro, можно разделить на три основные группы: n сохранения генетической информации клеток (микроклональное размножения растений и депонирования, культура зародышей, пыльников и семенных зачатков); n изменение генетической информации способом мутагенеза под влиянием физических и химических факторов (культура каллуса, клеточных суспензий, изолированных протопластов); n перенос и восстановление генетической информации (генно-инженерное конструирование растений с новыми признаками, соматическая гибридизация).

Одним из распространенных направлений метода культуры тканей является микроклональное размножения, при котором получают генетически идентичны формы, что способствует сохранению генетически однородного посадочного материала. Как эксплантатов можно использовать пазушные почки, молодые листья, некоторые элементы цветов и соцветий. Однако такой вид размножения требует конкретизации метода для каждой сельскохозяйственной культуры в связи с особенностями ее генотипа. Технология микроклонального размножения любой культуры объединяет четыре основных этапа: ввод исходной формы в стерильную культуру, собственно микроразмножения, укоренение размноженных побегов, перевод стерильной культуры в условиях открытого грунта. Разработка средств вегетативного размножения элитных растений, гетерозисных гибридов и сортов in vitro позволяет решить проблему быстрого размножения форм, имеющих практическую ценность, а также сохранения материала для использования в рекуррентные селекции.

Микроклональное размножения имеет определенные преимущества по сравнению с традиционными методами размножения: выращивание в искусственных условиях (контролируемых) тканей позволяет достичь извлечения вирусов и других патогенных микроорганизмов и получить здоровый посадочный материал; рост растений можно поддерживать в течение многих лет; методом культуры можно размножать формы, не размножающиеся вегетативно или не дающие жизнеспособных семян; можно выбирать генотипы, устойчивые к неблагоприятным условиям

выращивания: экстремальные температуры, засуха, засоление и закисление субстрата, угнетающее действие гербицидов и др., а также отбор продуктивных форм в условиях in vitro, скорость и коэффициент размножения достигает 1:1000000 и дает возможность вдвое-втрое сократить сроки отбора и получения новых растений в селекционных исследованиях.

На современном этапе существует несколько различных детально разработанных методов микроклонального размножения. Различаются они по состоянию исходных клеток и тканей, которые принимают для получения микроклонов. Важнейшим требованием технологии является гарантирование полной стерильности и оптимальных условий для клеточного деления и дифференциации исходной ткани. Затем следует добиться образования большого количества микроклонов и обеспечить их укоренения. Чтобы эффективность микроклонального размножения была высокой, нужно на всех этапах поддерживать оптимальные условия выращивания. Для этого для каждой культуры разрабатывают конкретную методику микроклонального размножения.

Укоренившиеся растения в случае необходимости размещают на депонирование пониженных температур. Это очень важный процесс, поскольку он позволяет задерживать развитие растений и таким образом длительное время сохранять их без пересадки, используя при необходимости. Для переноса стерильных растений в почву надо отбирать среди них здоровые, со светлой, хорошо развитой корневой системой. В репродуцированной культуре тканей видимых морфологических отклонений нет. Генетическая стабильность изолированной культуры наблюдается даже после многократных пассажей, что открывает новые возможности в сохранении генофонда сельскохозяйственных растений. Сохранение и дальнейшее размножение растений в культуре in vitro приобретает большое значение в связи с рекуррентным отбором. Из выращенных с помощью культуры in vitro маточных растений и корнеплодов получают высококачественные семена. В селекционной практике одновременно с микроклональное размножение растений широко используют метод каллусных культур из эксплантов различных органов, которые являются дополнительным резервом размножения селекционного материала. Он дает возможность практически использовать в селекционном процессе новый тип изменчивости – сомаклональную изменчивость. Каллусные культуры многих сельскохозяйственных растений характеризуются большой нестабильностью. Генетическая вариабельность соматических клеток является одной из причин неоднородности растений, полученных из каллусных тканей. Калусогенезу - это первый этап на пути получения сомаклональных вариантов требует перепрограммирования способов развития клетки. Клетка, переведенная в условия культивирования in vitro, сохраняет свою основную генетическую информацию о целом организм и при наличии соответствующих условий может реализовать ее. Однако физические и химические факторы культивирования, обладают мутагенным действием, а также генетическая гетерогенность соматических клеток

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]