
- •1.1 Электрическая цепь (эц), элемент эц, электрическая схема. Источники и приемники электрической энергии.
- •1.3 Законы Кирхгофа. Расчет цепей постоянного тока путем непосредственного применения законов Кирхгофа
- •1.2 Классификация электрических цепей (эц). Закон Ома для участка цепи, содержащего источник эдс.
- •1.4 Энергия и мощность цепей. Баланс мощностей. Мощность потерь и кпд.
- •1.5.Расчет цепей постоянного тока методом контурных токов
- •2.1 Получение синусоидальной эдс. Основные величины
- •2.2 Представление синусоидальных функций в различных формах.
- •1. Аналитический способ
- •2. Представление синусоидальных функций при помощи векторов
- •3. Представление синусоидальных функций при помощи комплексных чисел
- •2.3 Цепь переменного тока с резистором. Векторная диаграмма. Закон Ома в комплексной форме.
- •2.4 Цепь переменного тока с индуктивным элементом. Векторная диаграмма.
- •2.6 Резонанс напряжений. Векторная диаграмма.
- •2.7. Цепь переменного тока с последовательными соединениями эл-ов. Законы Ома и Кирхгофа в комплексной форме и для мгновенных значений.
- •2.8. Мощность цепи синусоидного тока (мгновенная, активная, реактивная, полная). Коэффициент мощности
- •3.1. Трехфазная электрическая цепь. Получение трехфазного тока. Способы изображения трехфазного тока, последовательность фаз
- •3.2. Схема соединений «звезда» - «звезда» с нулевым проводом. Векторная диаграмма. Симметричная и несимметричная нагрузка.
- •4.1.Магнитное поле, магнитная индукция.
- •4.2.Проводник с током в мп, самоиндукция.
- •4.3.Взаимная индукция. Закон полного тока.
- •5.1. Устройство и принцип действия трансформатора
- •5.2Работа трансформатора под нагрузкой.
- •5.3 Трехфазные трансформаторы. Устройство и принцип действия.
- •5.6 Измерительные трансформаторы.
- •6.1 Машины постоянного тока. Конструкция.
- •6.2 Принцип действия генератора постоянного тока.
- •6.4 Механическая характеристика асинхронного двигателя. Скольжение. Ммакс, Мном, Мпуск..
- •6.5 Генераторы постоянного тока с независимым возбуждением
- •6.6 Двигатель постоянного тока параллельного возбуждения. Схема. Механическая характеристика.
- •7.1 Принцип работы синхронного генератора(сг).
- •7.2 Основные величины и характеристики генераторов постоянного тока.
- •7.3 Устройство синхронных машин (см). Машины с явно и неявно выраженными полюсами.
- •7.4 Принцип работы синхронного двигателя (сд)
- •8.1 Пуск асинхронного двигателя (ад). Схема прямого пуска.
- •8.2 Потери в асинхронном двигателе. Коэффициент мощности.
- •9.1 Электронно-дырочный переход (эдп). Вольт-амперная характеристика (вах).
- •9.2 Полупроводниковые резисторы. Классификация. Обозначение в схеме. Основные свойства. Применение.
- •9.3 Полупроводниковые диоды, устройство и принцип действия. Вольтамперная характеристика.Типы диодов.Стабилитроны.Применение.
- •9 .4 Транзисторы. Устройство. Принцип действия. Параметры транзисторов. Обозначения в схемах. Применение.
- •9.5 Выпрямители. Схема однополупериодного выпрямления однофазного переменного тока.
- •9.6 Тиристоры. Устройство. Принцип действия. Вольт-амперная характеристика. Применение.
- •9.7 Оптоэлектронные элементы. Полупроводниковые оптоэлектронные приборы.
- •9.8 Электронные генераторы.
- •9.9 Элементы импульсной техники.
9.6 Тиристоры. Устройство. Принцип действия. Вольт-амперная характеристика. Применение.
Тиристор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости (тиристор заперт) и открытое состояние, то есть состояние высокой проводимости.
Устройство представляет собой четырёхслойный полупроводник структуры p-n-p-n, содержащий три последовательно соединённых p-n перехода. Контакт к внешнему p-слою называется анодом, к внешнему n-слою – катодом.
Вольтамперная характеристика
- между точками 0 и 1 находится участок, соответствующий высокому сопротивлению прибора — прямое запирание.
- в точке 1 происходит включение тиристора.
- между точками 1 и 2 находится участок с отрицательным дифференциальным сопротивлением.
- участок между точками 2 и 3 соответствует открытому состоянию (прямой проводимости).
- в точке 2 через прибор протекает минимальный удерживающий ток Ih.
- участок между 0 и 4 описывает режим обратного запирания прибора.
- участок между 4 и 5 — режим обратного пробоя.
Применение:
-электронные ключи;
-управляемые выпрямители;
-преобразователи (инверторы);
-регуляторы мощности (триммеры);
-конденсаторное зажигание.
9.7 Оптоэлектронные элементы. Полупроводниковые оптоэлектронные приборы.
К полупроводниковым приборам относятся:
Интегральные схемы (микросхемы)
Полупроводниковые диоды (в том числе варикапы, стабилитроны, диоды Шоттки),
Биполярные транзисторы (в том числе и гетеропереходные),
Тиристоры, фототиристоры,
Полевые транзисторы,
Приборы с зарядовой связью,
Полупроводниковые СВЧ-приборы (диоды Ганна, лавинно-пролетные диоды),
Оптоэлектронные приборы (фоторезисторы, фотодиоды, солнечные элементы, детекторы ядерных излучений, светодиоды, полупроводниковые лазеры, электролюминесцентные излучатели).
Терморезисторы, датчики Холла
Оптоэлектронный полупроводниковый прибор — полупроводниковый прибор, действие которого основано на использовании явлений излучения, передачи или поглощения в видимой, инфракрасной или ультрафиолетовой областях спектра.
Светоизлучающий диод — полупроводниковый прибор с одним переходом, в котором происходит преобразование электрической энергии в энергию светового излучения. Прибор предназначен для использования в устройствах визуального представления информации.
Оптопара — оптоэлектронный полупроводниковый прибор, который состоит из излучающего и фотоприемного элементов, между которыми имеется оптическая связь, обеспечивающая электрическую изоляцию между входом и выходом.
9.8 Электронные генераторы.
Электронный генератор – это устройство, преобразовывающее энергию источника питания в энергию электрических колебаний заданной частоты и формы. По способу возбуждения колебаний различают генераторы с независимым возбуждением и самовозбуждением. По форме колебаний различают генераторы гармонических колебаний и импульсные генераторы треугольных, трапецеидальных, пилообразных и др.
Генераторы бывают:
§ низкочастотные (НЧ) - до 100 кГц
§ высокочастотные (ВЧ) - от 0,1 до 100 МГц
Выходное напряжение генератора может быть синусоидальным, прямоугольным или пилообразным в зависимости от типа генератора.
Когда колебательный контур возбуждается внешним источником постоянного тока, в нем возникают колебания. Эти колебания являются затухающими, поскольку активное сопротивление колебательного контура поглощает энергию тока. Для поддержания колебаний в колебательном контуре поглощенную энергию необходимо восполнить. Это осуществляется с помощью положительной обратной связи.
Положительная обратная связь – это подача в колебательный контур части выходного сигнала для поддержки колебаний. Сигнал обратной связи должен совпадать по фазе с сигналом в колебательном контуре.
На рис.3.1 изображена функциональная схема генератора.
Рис.3.1. Функциональная схема генератора.
Генератор можно разбить на 3 части. Частотозадающей цепью генератора обычно является LC колебательный контур. Усилитель увеличивает амплитуду выходного сигнала колебательного контура. Цепь обратной связи подает необходимое количество энергии в колебательный контур для поддержания колебаний. Таким образом, генератор – это схема с ОС (обратной связью), которая использует постоянный ток для получения переменного тока.