
- •050708 (031200) Педагогика и методика начального образования дпп. Ф. 06. Математика
- •Глава I. Элементы логики
- •§ 1. Множества и операции над ними
- •1. Понятие множества и элемента множества
- •2. Способы задания множеств
- •3. Отношения между множествами. Подмножество. Равные множества. Универсальное множество. Круги Эйлера. Числовые множества.
- •4. Пересечение множеств
- •5. Объединение множеств
- •6. Свойства пересечения и объединения множеств
- •7. Вычитание множеств. Дополнение множества до универсального
- •8. Понятие разбиения множества на классы с помощью одного, двух, трех свойств
- •9. Декартово произведение множеств
- •10. Число элементов в объединении и разности конечных множеств
- •11. Число элементов в декартовом произведении конечных множеств
- •12. Основные понятия:
- •§ 2. Математические понятия
- •3. Способы определения понятий
- •4. Основные выводы
- •§ 3. Математические предложения
- •§ 4. Математическое доказательство
- •26. Схемы дедуктивных умозаключений.
- •§5. Текстовая задача и процесс ее решения
- •29. Структура текстовой задачи
- •30. Методы и способы решения текстовых задач
- •31. Этапы решения задачи и приемы их выполнения
- •2. Поиск и составление плана решения задачи
- •3. Осуществление плана решения задачи
- •4. Проверка решения задачи
- •5. Моделирование в процессе решения текстовых задач
- •Упражнения
- •32. Решение задач «на части»
- •Упражнения
- •33. Решение задач на движение
- •Упражнения
- •34. Основные выводы.
- •§6. Комбинаторные задачи и их решение
- •§ 7. Алгоритмы и их свойства
- •Упражнения
- •Упражнения
- •Глава II. Элементы алгебры
- •§ 8. Соответствия между двумя множествами
- •41. Понятие соответствия. Способы задания соответствий
- •2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
- •3. Взаимно-однозначные соответствия
- •Упражнения
- •42. Взаимно однозначные соответствия. Понятие взаимно однозначного отображения множества х на множество y
- •2. Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
- •Упражнения
- •43. Основные выводы § 8
- •§ 9. Числовые функции
- •44. Понятие функции. Способы задания функций
- •2. График функции. Свойство монотонности функции
- •Упражнения
- •45. Прямая и обратная пропорциональности
- •Упражнения
- •46. Основные выводы § 9
- •§10. Отношения на множестве
- •47. Понятие отношения на множестве
- •Упражнения
- •48. Свойства отношений
- •R рефлексивно на х ↔ х r х для любого х € X.
- •R симметрично на х ↔ (х r y →yRx).
- •49. Отношения эквивалентности и порядка
- •Упражнения
- •50. Основные выводы § 10
- •§ 11. Алгебраические операции на множестве
- •51. Понятие алгебраической операции
- •Упражнения
- •52. Свойства алгебраических операций
- •Упражнения
- •53. Основные выводы § 11
- •§ 12. Выражения. Уравнения. Неравенства
- •54. Выражения и их тождественные преобразования
- •Упражнения
- •55. Числовые равенства и неравенства
- •Упражнения
- •56. Уравнения с одной переменной
- •2. Равносильные уравнения. Теоремы о равносильности уравнений
- •3. Решение уравнений с одной переменной
- •Упражнения
- •57. Неравенства с одной переменной
- •2. Равносильные неравенства. Теоремы о равносильности неравенств
- •3. Решение неравенств с одной переменной
- •Упражнения
- •58. Основные выводы § 12
- •Упражнения
- •Глава III. Натуральные числа и нуль
- •§ 13. Из истории возникновения понятия натурального числа
- •§ 14. Аксиоматическое построение системы натуральных чисел
- •59. Об аксиоматическом способе построения теории
- •Упражнения
- •60. Основные понятия и аксиомы. Определение натурального числа
- •Упражнения
- •61. Сложение
- •62. Умножение
- •63. Упорядоченность множества натуральных чисел
- •Упражнения
- •64. Вычитание
- •Упражнения
- •65. Деление
- •66. Множество целых неотрицательных чисел
- •Упражнения
- •67. Метод математической индукции
- •Упражнения
- •68. Количественные натуральные числа. Счет
- •Упражнения
- •69. Основные выводы § 14
- •70. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- •Упражнения
- •Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
- •71. Теоретико-множественный смысл суммы
- •Упражнения
- •72. Теоретико-множественный смысл разности
- •Упражнения
- •73. Теоретико-множественный смысл произведения
- •Упражнения
- •74. Теоретико-множественный смысл частного натуральных чисел
- •Упражнения
- •75. Основные выводы § 15
- •§16. Натуральное число как мера величины
- •76. Понятие положительной скалярной величины и ее измерения
- •Упражнения
- •77. Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности
- •Упражнения
- •78. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин
- •79. Основные выводы § 16
- •80. Позиционные и непозиционные системы счисления
- •81. Запись числа в десятичной системе счисления
- •Упражнения
- •82. Алгоритм сложения
- •Упражнения
- •83. Алгоритм вычитания
- •Упражнения
- •84. Алгоритм умножения
- •Упражнения
- •85. Алгоритм деления
- •86. Позиционные системы счисления, отличные от десятичной
- •87. Основные выводы § 17
- •§ 18. Делимость натуральных чисел
- •88. Отношение делимости и его свойства
- •89. Признаки делимости
- •90. Наименьшее общее кратное и наибольший общий делитель
- •2. Основные свойства наименьшего общего кратного и наибольшего общего делителя чисел
- •3. Признак делимости на составное число
- •Упражнения
- •91. Простые числа
- •92. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- •93. Основные выводы § 18
- •3. Дистрибутивности:
- •§ 19. О расширении множества натуральных чисел
- •94. Понятие дроби
- •Упражнения
- •95. Положительные рациональные числа
- •96. Множество положительных рациональных чисел как расширение
- •97. Запись положительных рациональных чисел в виде десятичных дробей
- •98. Действительные числа
- •99. Основные выводы § 19
- •Глава IV. Геометрические фигуры и величины
- •§ 20. Из истории возникновения и развития геометрии
- •1. Сущность аксиоматического метода в построении теории
- •2. Возникновение геометрии. Геометрия Евклида и геометрия Лобачевского
- •3. Система геометрических понятий, изучаемых в школе. Основные свойства принадлежности точек и прямых, взаимного расположения точек на плоскости и прямой.
- •§ 21. Свойства геометрических фигур на плоскости
- •§ 22. Построение геометрических фигур
- •1. Элементарные задачи на построение
- •2. Этапы решения задачи на построение
- •Упражнения
- •3. Методы решения задач на построение: преобразования геометрических фигур на плоскости: центральная, осевая симметрии, гомотетия, движение.
- •Основные выводы
- •§24. Изображение пространственных фигур на плоскости
- •1. Свойства параллельного проектирования
- •2. Многогранники и их изображение
- •Тетраэдр Куб Октаэдр
- •Упражнения
- •3. Шар, цилиндр, конус и их изображение
- •Основные выводы
- •§ 25. Геометрические величины
- •1. Длина отрезка и ее измерение
- •1) Равные отрезки имеют равные длины;
- •2) Если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей.
- •Упражнения
- •2. Величина угла и ее измерение Каждый угол имеет величину. Специального названия для нее в
- •1) Равные углы имеют равные величины;
- •2) Если угол состоит из двух углов, то его величина равна сумме величин его частей.
- •Упражнения
- •1) Равные фигуры имеют равные площади;
- •2) Если фигура состоит из двух частей, то ее площадь равна сумме площадей этих частей.
- •4. Площадь многоугольника
- •5. Площадь произвольной плоской фигуры и ее измерение
- •Упражнения
- •Основные выводы
- •1. Понятие положительной скалярной величины и ее измерение
- •1) Масса одинакова у тел, уравновешивающих друг друга на весах;
- •2) Масса складывается, когда тела соединяются вместе: масса нескольких тел, взятых вместе, равна сумме их масс.
- •Заключение
- •Список литературы
2. Возникновение геометрии. Геометрия Евклида и геометрия Лобачевского
Геометрия зародилась в Древнем Египте как набор правил решения практических задач, возникавших в строительстве, при распределении земельных участков, измерении площадей, объемов и других величин. Свидетельством этому являются египетские пирамиды, построенные около 4800 лет назад. Их строительство требовало достаточно сложных и точных геометрических расчетов. Но особенно важной была задача распределения земельных наделов.
Обширные сведения о свойствах фигур, накопленные египтянами, были заимствованы греками. Произошло это в YIII-Yвв.до н.э. А так как особенно важной задачей было землемерие, то греки назвали науку о фигурах геометрией, так как с греческого «геос» - земля, а «метрио» - измеряю.
К сказанному можно добавить, что многие геометрические понятия возникли в результате многократных наблюдений реальных предметов той или иной формы, т.е. познавая окружающий мир, люди знакомились с простейшими геометрическими формами. Овладению этими знаниями способствовало изготовление орудий, имеющих сравнительно правильную геометрическую форму, строительство жилья, шитье одежды, изготовление посуды, украшений.
Огромное влияние на развитие геометрических представлений оказали систематические астрономические наблюдения. Они способствовали возникновению понятий шара, окружности, угла, угловой меры.
Развитие землемерия, обобщение накопленного опыта наблюдений привело к созданию практических правил измерения земельных участков, нахождения площадей и объемов простейших фигур, правил, необходимых для строительства, и др. Так, формулы для вычисления площадей земельных участков, имеющих форму треугольника, трапеции, встречаются у древних египтян, вавилонян. К XYII-XYIвв.до н.э. были установлены такие факты, как теорема Пифагора, найдено выражение для подсчета объема шара и многие другие. Но выступали они не как логически доказанные утверждения, а как выводы из опыта.
Таким образом, геометрия возникла как прикладная наука для решения практических задач: сравнения фигур, нахождения геометрических величин, простейших геометрических построений.
Практические правила постепенно приводились в систему. Кроме того, одни правила стали выводиться из других и обосновываться посредством рассуждений. Возникло доказательство, правила стали превращаться в теоремы, которые доказывались без прямых ссылок на опыт. Вообще совершенствование геометрических знаний шло по пути их отделения от опыта – в результате предметом геометрии стали не реальные, а идеальные фигуры, т.е. фигуры, являющиеся образами предметов, в которых абстрагируются от всего, кроме формы. Более того, эти фигуры стали дополняться свойствами, которыми реальные предметы не обладали. Например, понятие прямой, возникшее как отражение такого свойства реальных предметов, как протяженность, было дополнено представлением о ее бесконечности.
Получение новых геометрических утверждений при помощи рассуждений относится к YIв.до н.э. и связано с именем древнегреческого математика Фалеса. Считают, что им доказаны свойства равнобедренного треугольника, равенство вертикальных углов и ряд других фактов.
К Ш в.до н.э. геометрия становится дедуктивной наукой, одновременно решая многие практические задачи: дает точно обоснованные правила для построения фигур с заданными свойствами, позволяет различными способами сравнивать фигуры, по одним свойствам фигуры делать выводы о других ее свойствах и т.д.
Основные достижения в области математики были систематизированы около 300 лет до н.э. греческим ученым Евклидом и изложены в его знаменитом труде «Начала», состоящем из тринадцати книг. Это сочинение является первым дошедшим до нас строгим логическим построением геометрии.
Каждая книга «Начал» начинается с определений основных понятий. Так, в книге по геометрии 35 определений. Среди них определения точки, линии, прямой, поверхности.
Точка есть то, что не имеет частей.
Линия есть длина без ширины.
Прямая линия есть та, которая одинаково лежит относительно всех своих точек.
Поверхность есть то, что имеет длину и ширину.
Кроме перечисленных даются определения плоского и прямого углов, перпендикуляра, тупого и острого углов, круга, окружности, треугольника и его видов, четырехугольника и его видов и др.
За определениями следуют постулаты и аксиомы.
За постулатами и аксиомами, которые рассматривались как утверждения, принимаемые без доказательств, формулировались теоремы и задачи на построение. Они располагались в строгой последовательности так, что каждое последующее опирается на предыдущее, а также на постулаты и аксиомы.
Определения, постулаты, аксиомы и дальнейшие выводы в геометрии Евклида имели наглядный, опирающийся на практику смысл, хотя выражали его в идеализированном, абстрактном виде.
Таким образом, геометрия сложилась как наука о пространственных формах и отношениях, рассматриваемых отвлеченно от их математического содержания. В Древней Греции она сформировалась в абстрактную логическую систему, в основе которой лежат первоначальные понятия и аксиомы, новые факты формулируются в виде теорем и выводятся дедуктивным способом, а каждое новое понятие вводится с помощью определения на основе ранее введенных понятий.
«Начала» Евклида оставили глубокий след в истории и в течение многих веков служили образцом научного изложения математики.
После Ш в до н.э. геометрия развивалась медленно – требовались новые идеи и методы, необходимо было развитие понятия числа и алгебры. Первые шаги в этом направлении были сделаны в Греции (работы Диафанта, Ш в.), а затем в Индии, где были открыты десятичная система счисления, отрицательные и иррациональные числа.
В IXв. Благодаря работам Мухаммада аль-Хорезми дальнейшее развитие получила алгебра. Позже таджикский поэт и ученый Омар Хайям (конецXI– началоXIIв.) дал определение числа как отношения любых величин. Через 600 лет это же определение было дано Ньютоном во «Всеобщей арифметике». В геометрии новые идеи и методы появились вXYIIв. Они были обусловлены развитием алгебры и созданием математического анализа. Принадлежали эти идеи французскому философу и математику Рене Декарту. В своем сочинении «Геометрия» он впервые представил метод координат на плоскости, установив тем самым взаимосвязь геометрии с алгеброй.
Важным направлением в развитии геометрии был поиск логически безупречного построения геометрии. Дело в том, что аксиоматически построенная теория должна удовлетворять определенным требованиям математической строгости. Они не абсолютны и в разные периоды истории были различными. Эти требования заставили обратить особое внимание на пятый постулат геометрии Евклида – его трудно было принять очевидным, как остальные аксиомы и постулаты. Поэтому возникло стремление вывести его из остальных постулатов и аксиом. Однако попытки, которые длились более двух тысяч лет, были безуспешными, хотя и сыграли положительную роль в развитии геометрии, так как были сформулированы и доказаны теоремы, раскрывающие новые свойства геометрических фигур.
Переворот в геометрии произошел в начале XIXв., когда несколько ученых пришли к мысли о существовании геометрии, отличной от евклидовой. Первым, кто построил эту геометрию, был Н.И.Лобачевский, профессор Казанского университета. Его рассуждения сводились к следующему.
Рассмотрим в плоскости прямую а и проведем из точки А перпендикуляр АС к прямой а и луч АВ, перпендикулярный АС. Возьмем некоторую прямую АМ, пересекающую прямую а в точке М. При неограниченном удалении точки М по прямой а прямая АМ будет приближаться к некоторому предельному положению Логически могут представиться две возможности:
а) луч АМ совпадает с лучом АВ;
б) луч АМ составит с лучом АВ некоторый острый угол.
А В А В
а
С М С
а) б)
Случай а) соответствует аксиоме параллельности: АВ – единственная прямая, проходящая через А и не пересекающая а.
Допуская, что имеет место случай б), Лобачевский начал выводить различные следствия из этого допущения, надеясь, что рано или поздно придет к противоречию, чем и завершится доказательство. Однако, доказав несколько десятков теорем, он так и не обнаружил логических противоречий. И тогда Лобачевский высказал мысль: если заменить пятый постулат его отрицанием (т.е. принять, что через точку вне прямой можно провести более одной прямой, ей параллельной) и сохранить все остальные аксиомы евклидовой геометрии, то получим новую геометрию, которую он назвал «воображаемой», а позднее она была названа его именем – геометрией Лобачевского.
Все теоремы, доказываемые в евклидовой геометрии без использования пятого постулата, сохраняются и в геометрии Лобачевского. Например, вертикальные углы равны; углы при основании равнобедренного треугольника равны; из данной точки можно опустить на данную прямую только один перпендикуляр. Теоремы же, доказываемые в геометрии с помощью пятого постулата, видоизменяются. Например, сумма величин внутренних углов любого треугольника меньше 180º, не существует подобных треугольников: если углы двух треугольников соответственно равны, то эти треугольники равны. Так как в геометрии Лобачевского сумма внутренних углов четырехугольника меньше 360º, то в ней не существует прямоугольников. Позже было доказано, что аксиоматика, предложенная им, независима и непротиворечива.
Открытие, сделанной Н.И.Лобачевским, сыграло огромную роль в развитии математики и физики. В его работах была не только полностью решена проблема независимости аксиомы параллельности от других аксиом евклидовой геометрии, но и было показано, что аксиомы могут подвергаться изменению, что привлекло внимание ученых к вопросам аксиоматики геометрии. Кроме того, было установлено, что геометрия Лобачевского точно описывает взаимосвязь пространства и времени, открытую А.Эйнштейном в теории относительности.
Итог всем исследованиям в этой области подвел крупнейший немецкий математики Д.Гильберт. Произошло это в конце XIXстолетия. В своей книге «Основания геометрии» он дает полный список аксиом евклидовой геометрии и доказывает непротиворечивость этой аксиоматики. Сформулированные им аксиомы относятся к точкам, прямым, плоскостям и отношениям между ними, которые выражаются словами «принадлежит», «делать между», «конгруэнтен». Что такое точка, прямая и плоскость и каков конкретный смысл указанных отношений, Гильберт не уточняет. Все, что предполагается известным о них, выражено в аксиомах. Они разбиты на пять групп.