
- •050708 (031200) Педагогика и методика начального образования дпп. Ф. 06. Математика
- •Глава I. Элементы логики
- •§ 1. Множества и операции над ними
- •1. Понятие множества и элемента множества
- •2. Способы задания множеств
- •3. Отношения между множествами. Подмножество. Равные множества. Универсальное множество. Круги Эйлера. Числовые множества.
- •4. Пересечение множеств
- •5. Объединение множеств
- •6. Свойства пересечения и объединения множеств
- •7. Вычитание множеств. Дополнение множества до универсального
- •8. Понятие разбиения множества на классы с помощью одного, двух, трех свойств
- •9. Декартово произведение множеств
- •10. Число элементов в объединении и разности конечных множеств
- •11. Число элементов в декартовом произведении конечных множеств
- •12. Основные понятия:
- •§ 2. Математические понятия
- •3. Способы определения понятий
- •4. Основные выводы
- •§ 3. Математические предложения
- •§ 4. Математическое доказательство
- •26. Схемы дедуктивных умозаключений.
- •§5. Текстовая задача и процесс ее решения
- •29. Структура текстовой задачи
- •30. Методы и способы решения текстовых задач
- •31. Этапы решения задачи и приемы их выполнения
- •2. Поиск и составление плана решения задачи
- •3. Осуществление плана решения задачи
- •4. Проверка решения задачи
- •5. Моделирование в процессе решения текстовых задач
- •Упражнения
- •32. Решение задач «на части»
- •Упражнения
- •33. Решение задач на движение
- •Упражнения
- •34. Основные выводы.
- •§6. Комбинаторные задачи и их решение
- •§ 7. Алгоритмы и их свойства
- •Упражнения
- •Упражнения
- •Глава II. Элементы алгебры
- •§ 8. Соответствия между двумя множествами
- •41. Понятие соответствия. Способы задания соответствий
- •2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
- •3. Взаимно-однозначные соответствия
- •Упражнения
- •42. Взаимно однозначные соответствия. Понятие взаимно однозначного отображения множества х на множество y
- •2. Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
- •Упражнения
- •43. Основные выводы § 8
- •§ 9. Числовые функции
- •44. Понятие функции. Способы задания функций
- •2. График функции. Свойство монотонности функции
- •Упражнения
- •45. Прямая и обратная пропорциональности
- •Упражнения
- •46. Основные выводы § 9
- •§10. Отношения на множестве
- •47. Понятие отношения на множестве
- •Упражнения
- •48. Свойства отношений
- •R рефлексивно на х ↔ х r х для любого х € X.
- •R симметрично на х ↔ (х r y →yRx).
- •49. Отношения эквивалентности и порядка
- •Упражнения
- •50. Основные выводы § 10
- •§ 11. Алгебраические операции на множестве
- •51. Понятие алгебраической операции
- •Упражнения
- •52. Свойства алгебраических операций
- •Упражнения
- •53. Основные выводы § 11
- •§ 12. Выражения. Уравнения. Неравенства
- •54. Выражения и их тождественные преобразования
- •Упражнения
- •55. Числовые равенства и неравенства
- •Упражнения
- •56. Уравнения с одной переменной
- •2. Равносильные уравнения. Теоремы о равносильности уравнений
- •3. Решение уравнений с одной переменной
- •Упражнения
- •57. Неравенства с одной переменной
- •2. Равносильные неравенства. Теоремы о равносильности неравенств
- •3. Решение неравенств с одной переменной
- •Упражнения
- •58. Основные выводы § 12
- •Упражнения
- •Глава III. Натуральные числа и нуль
- •§ 13. Из истории возникновения понятия натурального числа
- •§ 14. Аксиоматическое построение системы натуральных чисел
- •59. Об аксиоматическом способе построения теории
- •Упражнения
- •60. Основные понятия и аксиомы. Определение натурального числа
- •Упражнения
- •61. Сложение
- •62. Умножение
- •63. Упорядоченность множества натуральных чисел
- •Упражнения
- •64. Вычитание
- •Упражнения
- •65. Деление
- •66. Множество целых неотрицательных чисел
- •Упражнения
- •67. Метод математической индукции
- •Упражнения
- •68. Количественные натуральные числа. Счет
- •Упражнения
- •69. Основные выводы § 14
- •70. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- •Упражнения
- •Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
- •71. Теоретико-множественный смысл суммы
- •Упражнения
- •72. Теоретико-множественный смысл разности
- •Упражнения
- •73. Теоретико-множественный смысл произведения
- •Упражнения
- •74. Теоретико-множественный смысл частного натуральных чисел
- •Упражнения
- •75. Основные выводы § 15
- •§16. Натуральное число как мера величины
- •76. Понятие положительной скалярной величины и ее измерения
- •Упражнения
- •77. Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности
- •Упражнения
- •78. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин
- •79. Основные выводы § 16
- •80. Позиционные и непозиционные системы счисления
- •81. Запись числа в десятичной системе счисления
- •Упражнения
- •82. Алгоритм сложения
- •Упражнения
- •83. Алгоритм вычитания
- •Упражнения
- •84. Алгоритм умножения
- •Упражнения
- •85. Алгоритм деления
- •86. Позиционные системы счисления, отличные от десятичной
- •87. Основные выводы § 17
- •§ 18. Делимость натуральных чисел
- •88. Отношение делимости и его свойства
- •89. Признаки делимости
- •90. Наименьшее общее кратное и наибольший общий делитель
- •2. Основные свойства наименьшего общего кратного и наибольшего общего делителя чисел
- •3. Признак делимости на составное число
- •Упражнения
- •91. Простые числа
- •92. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- •93. Основные выводы § 18
- •3. Дистрибутивности:
- •§ 19. О расширении множества натуральных чисел
- •94. Понятие дроби
- •Упражнения
- •95. Положительные рациональные числа
- •96. Множество положительных рациональных чисел как расширение
- •97. Запись положительных рациональных чисел в виде десятичных дробей
- •98. Действительные числа
- •99. Основные выводы § 19
- •Глава IV. Геометрические фигуры и величины
- •§ 20. Из истории возникновения и развития геометрии
- •1. Сущность аксиоматического метода в построении теории
- •2. Возникновение геометрии. Геометрия Евклида и геометрия Лобачевского
- •3. Система геометрических понятий, изучаемых в школе. Основные свойства принадлежности точек и прямых, взаимного расположения точек на плоскости и прямой.
- •§ 21. Свойства геометрических фигур на плоскости
- •§ 22. Построение геометрических фигур
- •1. Элементарные задачи на построение
- •2. Этапы решения задачи на построение
- •Упражнения
- •3. Методы решения задач на построение: преобразования геометрических фигур на плоскости: центральная, осевая симметрии, гомотетия, движение.
- •Основные выводы
- •§24. Изображение пространственных фигур на плоскости
- •1. Свойства параллельного проектирования
- •2. Многогранники и их изображение
- •Тетраэдр Куб Октаэдр
- •Упражнения
- •3. Шар, цилиндр, конус и их изображение
- •Основные выводы
- •§ 25. Геометрические величины
- •1. Длина отрезка и ее измерение
- •1) Равные отрезки имеют равные длины;
- •2) Если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей.
- •Упражнения
- •2. Величина угла и ее измерение Каждый угол имеет величину. Специального названия для нее в
- •1) Равные углы имеют равные величины;
- •2) Если угол состоит из двух углов, то его величина равна сумме величин его частей.
- •Упражнения
- •1) Равные фигуры имеют равные площади;
- •2) Если фигура состоит из двух частей, то ее площадь равна сумме площадей этих частей.
- •4. Площадь многоугольника
- •5. Площадь произвольной плоской фигуры и ее измерение
- •Упражнения
- •Основные выводы
- •1. Понятие положительной скалярной величины и ее измерение
- •1) Масса одинакова у тел, уравновешивающих друг друга на весах;
- •2) Масса складывается, когда тела соединяются вместе: масса нескольких тел, взятых вместе, равна сумме их масс.
- •Заключение
- •Список литературы
§ 19. О расширении множества натуральных чисел
Лекция 49. Положительные рациональные числа
План:
1. Рациональные числа. Понятие дроби.
2. Рациональное число как класс эквивалентных дробей.
3. Арифметические действия над рациональными числами. Сумма, произведение, разность, частное рациональных чисел. Законы сложения и умножения.
4. Свойства отношения «меньше» на множестве рациональных чисел.
Действительные числа - не последние в ряду различных чисел. Процесс, начавшийся с расширения множества натуральных чисел, продолжается и сегодня - этого требует развитие различных наук и самой математики.
Знакомство учащихся с дробными числами происходит, как правило, в начальных классах. Затем понятие дроби уточняется и расширяется в средней школе. В связи с этим учителю необходимо владеть понятием дроби и рационального числа, знать правила выполнения действий над рациональными числами, свойства этих действий. Все это нужно не только для того, чтобы математически грамотно ввести понятие дроби и обучать младших школьников выполнять с ними действия, но и, что не менее важно, видеть взаимосвязи множеств рациональных и действительных чисел с множеством натуральных чисел. Без их понимания нельзя решить проблему преемственности в обучении математике в начальных и последующих классах школы.
Отметим особенность изложения материала данного параграфа, которая обусловлена как небольшим объемом курса математики для учителей начальных классов, так и его назначением: материал будет представлен во многом конспективно, часто без строгих доказательств; более подробно будет изложен материал, связанный с рациональными числами.
Расширение множества N натуральных чисел будет происходить в такой последовательности: сначала строится множество Q+ положительных рациональных чисел, затем показывается, как его можно расширить до множестваR+ положительных действительных чисел, и, наконец, очень кратко описывается расширение множестваR+ до множестваRвсех действительных чисел.
94. Понятие дроби
Пусть требуется измерить длину отрезка хс помощью единичного отрезкае(рис. 128). При измерении оказалось, что отрезокхсостоит из трех отрезков, равныхе, и отрезка, который короче отрезкае.В этом случае длина отрезкахне может быть выражена натуральным числом.
I—I—I—I—I—I—I—I—I—I—I—I—I—I—I
I—I—I—I—I
Рис. 128
Однако если отрезок
е разбить на 4 равные части, то отрезок
хокажется состоящим из 14 отрезков,
равных четвертой части отрезкае.
И тогда, говоря о длине отрезках,мы должны указать два числа 4 и 14: четвертая
часть отрезкаеукладывается в
отрезке точно 14 раз. Поэтому условились
длину отрезках записывать в виде
∙Е, гдеЕ- длина единичного отрезкае, а символ
называть дробью.
В общем виде понятие дроби определяют так.
Пусть даны отрезок
х и единичный отрезок е, длина которого
Е. Если отрезок х состоит из т отрезков,
равных п-ой части отрезка е, то длина
отрезка х может быть представлена в
виде
∙
Е, где символ
называют дробью (и читают «эм энных»).
В записи дроби числа mиn- натуральные,mназывается числителем,n - знаменателем дроби.
Дробь называется правильной, если ее числитель меньше знаменателя, и неправильной, если ее числитель больше знаменателя или равен ему.
Вернемся к рисунку 128, где показано, что четвертая часть отрезка уложилась в отрезке х точно 14 раз. Очевидно, это не единственный вариант выбора такой части отрезкае, которая укладывается в отрезкех целое число раз. Можно взять восьмую часть отрезкае, тогда отрезокхбудет состоять из 28 таких частей и его длина будет выражаться дробью 28/8. Можно взять шестнадцатую часть отрезкае, тогда отрезокх будет состоять из 56 таких частей и его длина будет выражаться дробью 56/16.
Вообще длина одного
и того же отрезка хпри заданном
единичном отрезкееможет
выражаться различными дробями, причем,
если длина выражена дробью
,
то она может быть выражена и любой
дробью вида
,
гдек- натуральное число.
Теорема.Для
того чтобы дроби
и
выражали длину одного и того же отрезка,
необходимо и достаточно, чтобы выполнялось
равенствоmq = пр.
Доказательство этой теоремы мы опускаем.
Определение.Две дроби m/n и p/q называются равными, если mq= n p.
Если дроби равны, то пишут m/n = p/q .
Например, 17/3 = 119/21, так как 17∙21 = 119∙3 = 357, а 17/19 23/27, потому что 17∙27 = 459, 19∙23 = 437 и 459 ¹437.
Из сформулированных выше теоремы и определения следует, что две дроби равны тогда и только тогда, когда они выражают длину одного и того же отрезка.
Нам известно, что отношение равенства дробей рефлексивно, симметрично и транзитивно, т.е. является отношением эквивалентности. Теперь, используя определение равных дробей, это можно доказать.
Теорема. Равенство дробей является отношением эквивалентности.
Доказательство.
Действительно, равенство дробей
рефлексивно:
=
,
так как равенство
m/n = m/n справедливо
для любых натуральных
чисел т
и
п. Равенство
дробей симметрично: если
=
, то
=
,
так как из тq=
пр следует,
что рп
=
qт
(т, п, р, qÎN).
Оно
транзитивно:
если =
и
=
,
то
=
.
В самом деле, так как,
то тq
=
пр,
а
так как
=
,
то рs
=
qr.
Умножив
обе части равенства
тq
=
пр
на
s
,
а равенства
рs
=
qr
на п,
получим
тqs
= пр
s
и
прs
=
qrп.
Откуда
тqs
=
qrп
или тs
= пr.
Последнее
равенство означает,
что
=
.
Итак, равенство дробей рефлексивно,
симметрично и транзитивно,
следовательно, оно является отношением
эквивалентности.
Из определения равных дробей вытекает основное свойство дроби. Напомним его.
Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной.
На этом свойстве основано сокращение дробей и приведение дробей к общему знаменателю.
Сокращение дробей - это замена данной дроби другой, равной данной, но с меньшим числителем и знаменателем.
Если
числитель и знаменатель дроби одновременно
делятся только на
единицу, то дробь называют несократимой.
Например,
- несократимая
дробь, так как ее числитель и знаменатель
делятся одновременно
только на единицу, т.е. D(5,
17) = 1.
Приведение
дробей к общему знаменателю
- это замена данных дробей
равными им дробями, имеющими одинаковые
знаменатели. Общим знаменателем
двух дробей
и
является общее кратное чисел п
и
q,
а
наименьшим общим знаменателем - их
наименьшее кратное К(п,
q).
Задача.
Привести к наименьшему общему знаменателю
дроби
и
.
Решение.
Разложим числа 15 и 35 на простые
множители: 15
= 3∙5,
35 = 5∙7.
Тогда К(15, 35) = 3∙5∙7=
105. Поскольку 105=
15∙7
=
35∙3,
то
=
=
,
=
=