- •050708 (031200) Педагогика и методика начального образования дпп. Ф. 06. Математика
 - •Глава I. Элементы логики
 - •§ 1. Множества и операции над ними
 - •1. Понятие множества и элемента множества
 - •2. Способы задания множеств
 - •3. Отношения между множествами. Подмножество. Равные множества. Универсальное множество. Круги Эйлера. Числовые множества.
 - •4. Пересечение множеств
 - •5. Объединение множеств
 - •6. Свойства пересечения и объединения множеств
 - •7. Вычитание множеств. Дополнение множества до универсального
 - •8. Понятие разбиения множества на классы с помощью одного, двух, трех свойств
 - •9. Декартово произведение множеств
 - •10. Число элементов в объединении и разности конечных множеств
 - •11. Число элементов в декартовом произведении конечных множеств
 - •12. Основные понятия:
 - •§ 2. Математические понятия
 - •3. Способы определения понятий
 - •4. Основные выводы
 - •§ 3. Математические предложения
 - •§ 4. Математическое доказательство
 - •26. Схемы дедуктивных умозаключений.
 - •§5. Текстовая задача и процесс ее решения
 - •29. Структура текстовой задачи
 - •30. Методы и способы решения текстовых задач
 - •31. Этапы решения задачи и приемы их выполнения
 - •2. Поиск и составление плана решения задачи
 - •3. Осуществление плана решения задачи
 - •4. Проверка решения задачи
 - •5. Моделирование в процессе решения текстовых задач
 - •Упражнения
 - •32. Решение задач «на части»
 - •Упражнения
 - •33. Решение задач на движение
 - •Упражнения
 - •34. Основные выводы.
 - •§6. Комбинаторные задачи и их решение
 - •§ 7. Алгоритмы и их свойства
 - •Упражнения
 - •Упражнения
 - •Глава II. Элементы алгебры
 - •§ 8. Соответствия между двумя множествами
 - •41. Понятие соответствия. Способы задания соответствий
 - •2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
 - •3. Взаимно-однозначные соответствия
 - •Упражнения
 - •42. Взаимно однозначные соответствия. Понятие взаимно однозначного отображения множества х на множество y
 - •2. Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
 - •Упражнения
 - •43. Основные выводы § 8
 - •§ 9. Числовые функции
 - •44. Понятие функции. Способы задания функций
 - •2. График функции. Свойство монотонности функции
 - •Упражнения
 - •45. Прямая и обратная пропорциональности
 - •Упражнения
 - •46. Основные выводы § 9
 - •§10. Отношения на множестве
 - •47. Понятие отношения на множестве
 - •Упражнения
 - •48. Свойства отношений
 - •R рефлексивно на х ↔ х r х для любого х € X.
 - •R симметрично на х ↔ (х r y →yRx).
 - •49. Отношения эквивалентности и порядка
 - •Упражнения
 - •50. Основные выводы § 10
 - •§ 11. Алгебраические операции на множестве
 - •51. Понятие алгебраической операции
 - •Упражнения
 - •52. Свойства алгебраических операций
 - •Упражнения
 - •53. Основные выводы § 11
 - •§ 12. Выражения. Уравнения. Неравенства
 - •54. Выражения и их тождественные преобразования
 - •Упражнения
 - •55. Числовые равенства и неравенства
 - •Упражнения
 - •56. Уравнения с одной переменной
 - •2. Равносильные уравнения. Теоремы о равносильности уравнений
 - •3. Решение уравнений с одной переменной
 - •Упражнения
 - •57. Неравенства с одной переменной
 - •2. Равносильные неравенства. Теоремы о равносильности неравенств
 - •3. Решение неравенств с одной переменной
 - •Упражнения
 - •58. Основные выводы § 12
 - •Упражнения
 - •Глава III. Натуральные числа и нуль
 - •§ 13. Из истории возникновения понятия натурального числа
 - •§ 14. Аксиоматическое построение системы натуральных чисел
 - •59. Об аксиоматическом способе построения теории
 - •Упражнения
 - •60. Основные понятия и аксиомы. Определение натурального числа
 - •Упражнения
 - •61. Сложение
 - •62. Умножение
 - •63. Упорядоченность множества натуральных чисел
 - •Упражнения
 - •64. Вычитание
 - •Упражнения
 - •65. Деление
 - •66. Множество целых неотрицательных чисел
 - •Упражнения
 - •67. Метод математической индукции
 - •Упражнения
 - •68. Количественные натуральные числа. Счет
 - •Упражнения
 - •69. Основные выводы § 14
 - •70. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
 - •Упражнения
 - •Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
 - •71. Теоретико-множественный смысл суммы
 - •Упражнения
 - •72. Теоретико-множественный смысл разности
 - •Упражнения
 - •73. Теоретико-множественный смысл произведения
 - •Упражнения
 - •74. Теоретико-множественный смысл частного натуральных чисел
 - •Упражнения
 - •75. Основные выводы § 15
 - •§16. Натуральное число как мера величины
 - •76. Понятие положительной скалярной величины и ее измерения
 - •Упражнения
 - •77. Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности
 - •Упражнения
 - •78. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин
 - •79. Основные выводы § 16
 - •80. Позиционные и непозиционные системы счисления
 - •81. Запись числа в десятичной системе счисления
 - •Упражнения
 - •82. Алгоритм сложения
 - •Упражнения
 - •83. Алгоритм вычитания
 - •Упражнения
 - •84. Алгоритм умножения
 - •Упражнения
 - •85. Алгоритм деления
 - •86. Позиционные системы счисления, отличные от десятичной
 - •87. Основные выводы § 17
 - •§ 18. Делимость натуральных чисел
 - •88. Отношение делимости и его свойства
 - •89. Признаки делимости
 - •90. Наименьшее общее кратное и наибольший общий делитель
 - •2. Основные свойства наименьшего общего кратного и наибольшего общего делителя чисел
 - •3. Признак делимости на составное число
 - •Упражнения
 - •91. Простые числа
 - •92. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
 - •93. Основные выводы § 18
 - •3. Дистрибутивности:
 - •§ 19. О расширении множества натуральных чисел
 - •94. Понятие дроби
 - •Упражнения
 - •95. Положительные рациональные числа
 - •96. Множество положительных рациональных чисел как расширение
 - •97. Запись положительных рациональных чисел в виде десятичных дробей
 - •98. Действительные числа
 - •99. Основные выводы § 19
 - •Глава IV. Геометрические фигуры и величины
 - •§ 20. Из истории возникновения и развития геометрии
 - •1. Сущность аксиоматического метода в построении теории
 - •2. Возникновение геометрии. Геометрия Евклида и геометрия Лобачевского
 - •3. Система геометрических понятий, изучаемых в школе. Основные свойства принадлежности точек и прямых, взаимного расположения точек на плоскости и прямой.
 - •§ 21. Свойства геометрических фигур на плоскости
 - •§ 22. Построение геометрических фигур
 - •1. Элементарные задачи на построение
 - •2. Этапы решения задачи на построение
 - •Упражнения
 - •3. Методы решения задач на построение: преобразования геометрических фигур на плоскости: центральная, осевая симметрии, гомотетия, движение.
 - •Основные выводы
 - •§24. Изображение пространственных фигур на плоскости
 - •1. Свойства параллельного проектирования
 - •2. Многогранники и их изображение
 - •Тетраэдр Куб Октаэдр
 - •Упражнения
 - •3. Шар, цилиндр, конус и их изображение
 - •Основные выводы
 - •§ 25. Геометрические величины
 - •1. Длина отрезка и ее измерение
 - •1) Равные отрезки имеют равные длины;
 - •2) Если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей.
 - •Упражнения
 - •2. Величина угла и ее измерение Каждый угол имеет величину. Специального названия для нее в
 - •1) Равные углы имеют равные величины;
 - •2) Если угол состоит из двух углов, то его величина равна сумме величин его частей.
 - •Упражнения
 - •1) Равные фигуры имеют равные площади;
 - •2) Если фигура состоит из двух частей, то ее площадь равна сумме площадей этих частей.
 - •4. Площадь многоугольника
 - •5. Площадь произвольной плоской фигуры и ее измерение
 - •Упражнения
 - •Основные выводы
 - •1. Понятие положительной скалярной величины и ее измерение
 - •1) Масса одинакова у тел, уравновешивающих друг друга на весах;
 - •2) Масса складывается, когда тела соединяются вместе: масса нескольких тел, взятых вместе, равна сумме их масс.
 - •Заключение
 - •Список литературы
 
10. Число элементов в объединении и разности конечных множеств
Нам известно, как находят объединение двух конечных непересекающихся множеств. Например, если А = {х, у, z}, а В = {k,l,m,p}, то А∪В ={х, у,z,k,l,m,p}. Чтобы ответить на вопрос: «Сколько элементов в полученном множестве?», достаточно пересчитать их.
А как определить число элементов в объединении конечных множеств, не образуя его и не обращаясь к пересчету элементов?
Условимся предложение «Множество А содержит а элементов» записывать в таком виде: n(А) = а. Например, если А = {х, у,z}, то утверждение «Множество А содержит три элемента можно записать так:n(А) = 3.
Можно доказать, что в множестве А содержится а элементов, а в множестве В – bэлементов и множества А и В не пересекаются, то в объединении множеств А и В содержится а +bэлементов, т.е.
n(А∪В) = n(А) + n(В) = в + b.(1)
Это правило нахождения числа элементов в объединении двух конечных непересекающихся множеств, его можно обобщить на случай tпопарно непересекающихся множеств, т.е. если множества А₁, А₂, …, Аtпопарно не пересекаются, тоn(А₁ ∪ А₂ ∪ …∪ Аt) =n(А₁) + n(А₂) + … + n(Аt).
Для выше описанных множеств n(А) = 3,n(В) = 4. Видим, что А∩ В =∅. Тогдаn(А∪В) =n(А) +n(В) = 3 + 4 = 7.
Нетрудно убедиться в том, что если В ⊂ А, то n (В´А) = n(А) - n(В),т.е. число элементов дополнения подмножества В до конечного множества А равно разности численностей этих множеств.
Пусть, например, А = {х, у, z,p,t}, а В = { х,p,t}. Получаемn(А) = 5,n(В) = 3. Тогдаn(В´А) =n(А) -n(В) = 5 – 3 = 2.
Формула (1) позволяет находить число элементов в объединении конечных непересекающихся множеств. А если множества А и В имеют общие элементы, то как найти число элементов в их объединении?
Пусть, например, А = {х, у, z}, а В = {х,z, р,s,k}. Тогда А∪ В = {х, у,z, р,s,k}, т.е.n(А) = 3,n(В) = 5, аn(А∩ В) = 2 и, значит, общие элементы множеств А и В в объединении этих множеств записаны только один раз.
В общем виде правило подсчета элементов в объединении двух конечных множеств может быть представлено в виде формулы:
n(А∪В) = n(А) + n(В) - n(А ∩ В).(2)
Полученные формулы для подсчета числа элементов в объединении двух и более множеств можно использовать для решения текстовых задач следующего вида.
Задача. Из 40 студентов курса 32 изучают английский язык, 21 – немецкий язык, а 15 – английский и немецкий языки. Сколько студентов курса не изучает ни английский, ни немецкий языки?
Решение. Пусть А – множество студентов курса, изучающих английский язык, В – множество студентов курса, изучающих немецкий язык, С – множество всех студентов курса. По условию задачи: n(А) = 32,n(В) = 21,n(А∩ В) = 15,n(С) = 40. Требуется найти число студентов курса, не изучающих ни английского, ни немецкого языка.
1 способ.
1) Найдем число элементов в объединении данных множеств А и В. Для этого воспользуемся формулой (2):
n(А∪В) =n(А) +n(В) -n(А∩ В) = 32 + 21 – 15 = 38.
2) Найдем число студентов курса, которые не изучают ни английский, ни немецкий языки: 40 – 38 = 2.
2 способ.
1) Изобразим данные множества при помощи кругов Эйлера и определим число элементов в каждом из непересекающихся подмножеств (рисунок).

Так как в пересечении множеств А и В содержится 15 элементов, то студентов, изучающих только английский язык, будет 32 – 15 = 17, а студентов, изучающих только немецкий язык, 21 – 15 = 6. Тогда n(А∪В) = 17 + 15 + 6 = 38, и, следовательно, число студентов курса, которые не изучают ни английский, ни немецкий языки, будет 40 – 38 = 2.
