
- •050708 (031200) Педагогика и методика начального образования дпп. Ф. 06. Математика
- •Глава I. Элементы логики
- •§ 1. Множества и операции над ними
- •1. Понятие множества и элемента множества
- •2. Способы задания множеств
- •3. Отношения между множествами. Подмножество. Равные множества. Универсальное множество. Круги Эйлера. Числовые множества.
- •4. Пересечение множеств
- •5. Объединение множеств
- •6. Свойства пересечения и объединения множеств
- •7. Вычитание множеств. Дополнение множества до универсального
- •8. Понятие разбиения множества на классы с помощью одного, двух, трех свойств
- •9. Декартово произведение множеств
- •10. Число элементов в объединении и разности конечных множеств
- •11. Число элементов в декартовом произведении конечных множеств
- •12. Основные понятия:
- •§ 2. Математические понятия
- •3. Способы определения понятий
- •4. Основные выводы
- •§ 3. Математические предложения
- •§ 4. Математическое доказательство
- •26. Схемы дедуктивных умозаключений.
- •§5. Текстовая задача и процесс ее решения
- •29. Структура текстовой задачи
- •30. Методы и способы решения текстовых задач
- •31. Этапы решения задачи и приемы их выполнения
- •2. Поиск и составление плана решения задачи
- •3. Осуществление плана решения задачи
- •4. Проверка решения задачи
- •5. Моделирование в процессе решения текстовых задач
- •Упражнения
- •32. Решение задач «на части»
- •Упражнения
- •33. Решение задач на движение
- •Упражнения
- •34. Основные выводы.
- •§6. Комбинаторные задачи и их решение
- •§ 7. Алгоритмы и их свойства
- •Упражнения
- •Упражнения
- •Глава II. Элементы алгебры
- •§ 8. Соответствия между двумя множествами
- •41. Понятие соответствия. Способы задания соответствий
- •2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
- •3. Взаимно-однозначные соответствия
- •Упражнения
- •42. Взаимно однозначные соответствия. Понятие взаимно однозначного отображения множества х на множество y
- •2. Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
- •Упражнения
- •43. Основные выводы § 8
- •§ 9. Числовые функции
- •44. Понятие функции. Способы задания функций
- •2. График функции. Свойство монотонности функции
- •Упражнения
- •45. Прямая и обратная пропорциональности
- •Упражнения
- •46. Основные выводы § 9
- •§10. Отношения на множестве
- •47. Понятие отношения на множестве
- •Упражнения
- •48. Свойства отношений
- •R рефлексивно на х ↔ х r х для любого х € X.
- •R симметрично на х ↔ (х r y →yRx).
- •49. Отношения эквивалентности и порядка
- •Упражнения
- •50. Основные выводы § 10
- •§ 11. Алгебраические операции на множестве
- •51. Понятие алгебраической операции
- •Упражнения
- •52. Свойства алгебраических операций
- •Упражнения
- •53. Основные выводы § 11
- •§ 12. Выражения. Уравнения. Неравенства
- •54. Выражения и их тождественные преобразования
- •Упражнения
- •55. Числовые равенства и неравенства
- •Упражнения
- •56. Уравнения с одной переменной
- •2. Равносильные уравнения. Теоремы о равносильности уравнений
- •3. Решение уравнений с одной переменной
- •Упражнения
- •57. Неравенства с одной переменной
- •2. Равносильные неравенства. Теоремы о равносильности неравенств
- •3. Решение неравенств с одной переменной
- •Упражнения
- •58. Основные выводы § 12
- •Упражнения
- •Глава III. Натуральные числа и нуль
- •§ 13. Из истории возникновения понятия натурального числа
- •§ 14. Аксиоматическое построение системы натуральных чисел
- •59. Об аксиоматическом способе построения теории
- •Упражнения
- •60. Основные понятия и аксиомы. Определение натурального числа
- •Упражнения
- •61. Сложение
- •62. Умножение
- •63. Упорядоченность множества натуральных чисел
- •Упражнения
- •64. Вычитание
- •Упражнения
- •65. Деление
- •66. Множество целых неотрицательных чисел
- •Упражнения
- •67. Метод математической индукции
- •Упражнения
- •68. Количественные натуральные числа. Счет
- •Упражнения
- •69. Основные выводы § 14
- •70. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- •Упражнения
- •Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
- •71. Теоретико-множественный смысл суммы
- •Упражнения
- •72. Теоретико-множественный смысл разности
- •Упражнения
- •73. Теоретико-множественный смысл произведения
- •Упражнения
- •74. Теоретико-множественный смысл частного натуральных чисел
- •Упражнения
- •75. Основные выводы § 15
- •§16. Натуральное число как мера величины
- •76. Понятие положительной скалярной величины и ее измерения
- •Упражнения
- •77. Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности
- •Упражнения
- •78. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин
- •79. Основные выводы § 16
- •80. Позиционные и непозиционные системы счисления
- •81. Запись числа в десятичной системе счисления
- •Упражнения
- •82. Алгоритм сложения
- •Упражнения
- •83. Алгоритм вычитания
- •Упражнения
- •84. Алгоритм умножения
- •Упражнения
- •85. Алгоритм деления
- •86. Позиционные системы счисления, отличные от десятичной
- •87. Основные выводы § 17
- •§ 18. Делимость натуральных чисел
- •88. Отношение делимости и его свойства
- •89. Признаки делимости
- •90. Наименьшее общее кратное и наибольший общий делитель
- •2. Основные свойства наименьшего общего кратного и наибольшего общего делителя чисел
- •3. Признак делимости на составное число
- •Упражнения
- •91. Простые числа
- •92. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- •93. Основные выводы § 18
- •3. Дистрибутивности:
- •§ 19. О расширении множества натуральных чисел
- •94. Понятие дроби
- •Упражнения
- •95. Положительные рациональные числа
- •96. Множество положительных рациональных чисел как расширение
- •97. Запись положительных рациональных чисел в виде десятичных дробей
- •98. Действительные числа
- •99. Основные выводы § 19
- •Глава IV. Геометрические фигуры и величины
- •§ 20. Из истории возникновения и развития геометрии
- •1. Сущность аксиоматического метода в построении теории
- •2. Возникновение геометрии. Геометрия Евклида и геометрия Лобачевского
- •3. Система геометрических понятий, изучаемых в школе. Основные свойства принадлежности точек и прямых, взаимного расположения точек на плоскости и прямой.
- •§ 21. Свойства геометрических фигур на плоскости
- •§ 22. Построение геометрических фигур
- •1. Элементарные задачи на построение
- •2. Этапы решения задачи на построение
- •Упражнения
- •3. Методы решения задач на построение: преобразования геометрических фигур на плоскости: центральная, осевая симметрии, гомотетия, движение.
- •Основные выводы
- •§24. Изображение пространственных фигур на плоскости
- •1. Свойства параллельного проектирования
- •2. Многогранники и их изображение
- •Тетраэдр Куб Октаэдр
- •Упражнения
- •3. Шар, цилиндр, конус и их изображение
- •Основные выводы
- •§ 25. Геометрические величины
- •1. Длина отрезка и ее измерение
- •1) Равные отрезки имеют равные длины;
- •2) Если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей.
- •Упражнения
- •2. Величина угла и ее измерение Каждый угол имеет величину. Специального названия для нее в
- •1) Равные углы имеют равные величины;
- •2) Если угол состоит из двух углов, то его величина равна сумме величин его частей.
- •Упражнения
- •1) Равные фигуры имеют равные площади;
- •2) Если фигура состоит из двух частей, то ее площадь равна сумме площадей этих частей.
- •4. Площадь многоугольника
- •5. Площадь произвольной плоской фигуры и ее измерение
- •Упражнения
- •Основные выводы
- •1. Понятие положительной скалярной величины и ее измерение
- •1) Масса одинакова у тел, уравновешивающих друг друга на весах;
- •2) Масса складывается, когда тела соединяются вместе: масса нескольких тел, взятых вместе, равна сумме их масс.
- •Заключение
- •Список литературы
Упражнения
1. Верно ли, что каждое натуральное число получается из непосредственно следующего вычитанием единицы?
2. В чем особенность логической структуры теоремы 19? Можно ли ее сформулировать, используя слова «необходимо и достаточно»?
3. Докажите, что:
а) если b > с, то (а + b) - с = а + (b - с);
б) если а > b + с, то а - ( b + с) = (а - b) - с.
4. Можно ли, не выполняя вычислений, сказать, значения каких выражений будут равны:
а) (50 + 16)- 14; г) 50 + (16 -14),
б) (50 - 14) + 16; д) 50 - (16 - 14); в) (50 - 14) - 16, е) (50 + 14) - 16.
а) 50 - (16 + 14); г) (50 - 14) + 16;
б) (50 - 16) + 14; д) (50 - 14) - 16;
в) (50 - 16) - 14; е) 50 - 16- 14.
5. Какие свойства вычитания являются теоретической основой следующих приемов вычислении, изучаемых в начальном курсе математики:
а) 12-5
12 - 2-3 12 -5 = 7
б) 16-7 = 16-6 - П;
в) 48 - 30 = (40 + 8} - 30 = 40 + 8 =18;
г) 48 - 3 = (40 + 8) - 3 = 40 + 5 = 45.
6. Опишите возможные способы вычисления значения выражения вида. а - b - с и проиллюстрируйте их на конкретных примерах.
7. Докажите, что при b < а и любых натуральных c верно равенство (a – b) с = ас - bс.
Указание. Доказательство основывается на аксиоме 4.
8. Определите значение выражения, не выполняя письменных вычислений. Ответы обоснуйте.
а) 7865 6 – 7865 5: б) 957 11 - 957; в) 12 36 – 7 36.
65. Деление
При аксиоматическом построении теории натуральных чисел деление обычно определяется как операция, обратная умножению.
Определение. Делением натуральных чисел а и b называется операция, удовлетворяющая условию: а: b = с тогда и только тогда, когда b с = а.
Число а:b называется частным чисел а и b, число а делимым, число b - делителем.
Как известно, деление на множестве натуральных чисел существует не всегда, и такого удобного признака существования частного, какой существует для разности, нет. Есть только необходимое условие существования частного.
Теорема 23. Для того чтобы существовало частное двух натуральных чисел а и b, необходимо, чтобы b < а.
Доказательство. Пусть частное натуральных чисел а и b существует, т.е. есть такое натуральное число c, что bс = а. Так как для любого натурального числа 1 справедливо неравенство 1 с, то, умножив обе его части на натуральное число b, получим b bс. Но bс = а, следовательно, b а.
Теорема 24. Если частное натуральных чисел а и b существует, то оно единственно.
Доказательство этой теоремы аналогично доказательству теоремы о единственности разности натуральных чисел.
Исходя из определения частного натуральных чисел и условия его существования, можно обосновать известные правила деления суммы (разности, произведения) на число.
Теорема 25. Если числа а и b делятся на число с, то и их сумма а + b делится на с, причем частное, получаемое при делении суммы а + b на число с, равно сумме частных, получаемых при делении а на с и b на с, т.е. (а + b):с = а:с + b:с.
Доказательство. Так как число а делится на с, то существует такое натуральное число х = а;с, что а = сх. Аналогично существует такое натуральное число у = b:с, что
b = су. Но тогда а + b = сх + су =- с(х + у). Это значит, что а + b делится на c, причем частное, получаемое при делении суммы а + b на число c, равно х + у, т.е. ах + b : с.
Доказанную теорему можно сформулировать в виде правила деления суммы на число: для того чтобы разделить сумму на число, достаточно разделить на это число каждое слагаемое и полученные результаты сложить.
Теорема 26. Если натуральные числа а и b делятся на число с и а > b, то разность а - b делится на c, причем частное, получаемое при делении разности на число c, равно разности частных, получаемых при делении а на с и b на c, т.е. (а - b):с = а: с - b:с.
Доказательство этой теоремы проводится аналогично доказательству предыдущей теоремы.
Эту теорему можно сформулировать в виде правила деления разности на число: для того, чтобы разделить разность на число, достаточно разделить на это число уменьшаемое и вычитаемое и из первого частного вычесть второе.
Теорема 27. Если натуральное число а делится на натуральное число с, то для любого натурального числа b произведение аb делится на с. При этом частное, получаемое при делении произведения аb на число с, равно произведению частного, получаемого при делении а на с, и числа b: (а b):с - (а:с) b.
Д о к азательство . Так как а делится на с, то существует такое натуральное число х, что а:с = х, откуда а = сх. Умножив обе части равенства на b, получим аb = (сх)b. Поскольку умножение ассоциативно, то (сх) b = с(х b). Отсюда (а b):с = х b= (а:с) b. Теорему можно сформулировать в виде правила деления произведения на число: для того чтобы разделить произведение на число, достаточно разделить на это число один из множителей и полученный результат умножить на второй множитель.
В начальном обучении математике определение деления как операции обратной умножению, в общем виде, как правило, не дается, но им постоянно пользуются, начиная с первых уроков ознакомления с делением. Учащиеся должны хорошо понимать, что деление связано с умножением, и использовать эту взаимосвязь при вычислениях. Выполняя деление, например, 48 на 16, учащиеся рассуждают так: «Разделить 48 на 16 - это значит найти такое число, при умножении которого на 16 получится 48; таким числом будет 3, так как 163 = 48. Следовательно, 48 : 16 = 3.
Упражнения
1. Докажите, что:
а) если частное натуральных чисел а и b существует, то оно единственно;
б) если числа а и b делятся на с и а > b, то (а - b): с = а: с - b: с . 2. Можно ли утверждать, что все данные равенства верные: а) 48:(24) = 48:2:4; б) 56:(27) = 56:7:2;
в) 850:170 =850:10:17.
Какое правило является обобщением данных случаев? Сформулируйте его и докажите.
3. Какие свойства деления являются теоретической основой для выполнения следующих заданий, предлагаемых школьникам начальных классов:
можно ли, не выполняя деления, сказать, значения каких выражений будут одинаковыми:
а) (40+ 8):2; в) 48:3; д) (20+ 28):2;
б) (30 + 16):3; г)(21+27):3; е) 48:2;
. верны ли равенства:
а) 48:6:2 = 48:(6:2); б) 96:4:2 = 96:(4-2);
в) (40 - 28): 4 = 10-7?
4. Опишите возможные способы вычисления значения выражения вида:
а) (а + b):с; б) а: b: с; в) ( а b): с .
Предложенные способы проиллюстрируйте на конкретных примерах.
5. Найдите значения выражения рациональным способом; свои действия обоснуйте:
а) (7 63):7; в) (15 18):(56);
б) (3 4 5): 15; г) (12 21): 14.
6. Обоснуйте следующие приемы деления на двузначное число:
а) 954:18 = (900 + 54): 18 = 900:18 + 54:18 =50 + 3 = 53;
б) 882:18 = (900 - 18): 18 = 900:18 - 18:18 = 50 - 1 =49;
в) 480:32 = 480: (8 4) = 480:8:4 = 60:4 = 15:
г) (560 32): 16 = 560(32:16) = 5602 = 1120.
7. Не выполняя деления уголком, найдите наиболее рациональным способом частное; выбранный способ обоснуйте:
а) 495:15; в) 455:7; д) 275:55;
6) 425:85; г) 225:9; е) 455:65.
Лекция 34. Свойства множества целых неотрицательных чисел
План:
1. Множество целых неотрицательных чисел. Свойства множества целых неотрицательных чисел.
2. Понятие отрезка натурального ряда чисел и счета элементов конечного множества. Порядковые и количественные натуральные числа.