
- •050708 (031200) Педагогика и методика начального образования дпп. Ф. 06. Математика
- •Глава I. Элементы логики
- •§ 1. Множества и операции над ними
- •1. Понятие множества и элемента множества
- •2. Способы задания множеств
- •3. Отношения между множествами. Подмножество. Равные множества. Универсальное множество. Круги Эйлера. Числовые множества.
- •4. Пересечение множеств
- •5. Объединение множеств
- •6. Свойства пересечения и объединения множеств
- •7. Вычитание множеств. Дополнение множества до универсального
- •8. Понятие разбиения множества на классы с помощью одного, двух, трех свойств
- •9. Декартово произведение множеств
- •10. Число элементов в объединении и разности конечных множеств
- •11. Число элементов в декартовом произведении конечных множеств
- •12. Основные понятия:
- •§ 2. Математические понятия
- •3. Способы определения понятий
- •4. Основные выводы
- •§ 3. Математические предложения
- •§ 4. Математическое доказательство
- •26. Схемы дедуктивных умозаключений.
- •§5. Текстовая задача и процесс ее решения
- •29. Структура текстовой задачи
- •30. Методы и способы решения текстовых задач
- •31. Этапы решения задачи и приемы их выполнения
- •2. Поиск и составление плана решения задачи
- •3. Осуществление плана решения задачи
- •4. Проверка решения задачи
- •5. Моделирование в процессе решения текстовых задач
- •Упражнения
- •32. Решение задач «на части»
- •Упражнения
- •33. Решение задач на движение
- •Упражнения
- •34. Основные выводы.
- •§6. Комбинаторные задачи и их решение
- •§ 7. Алгоритмы и их свойства
- •Упражнения
- •Упражнения
- •Глава II. Элементы алгебры
- •§ 8. Соответствия между двумя множествами
- •41. Понятие соответствия. Способы задания соответствий
- •2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
- •3. Взаимно-однозначные соответствия
- •Упражнения
- •42. Взаимно однозначные соответствия. Понятие взаимно однозначного отображения множества х на множество y
- •2. Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
- •Упражнения
- •43. Основные выводы § 8
- •§ 9. Числовые функции
- •44. Понятие функции. Способы задания функций
- •2. График функции. Свойство монотонности функции
- •Упражнения
- •45. Прямая и обратная пропорциональности
- •Упражнения
- •46. Основные выводы § 9
- •§10. Отношения на множестве
- •47. Понятие отношения на множестве
- •Упражнения
- •48. Свойства отношений
- •R рефлексивно на х ↔ х r х для любого х € X.
- •R симметрично на х ↔ (х r y →yRx).
- •49. Отношения эквивалентности и порядка
- •Упражнения
- •50. Основные выводы § 10
- •§ 11. Алгебраические операции на множестве
- •51. Понятие алгебраической операции
- •Упражнения
- •52. Свойства алгебраических операций
- •Упражнения
- •53. Основные выводы § 11
- •§ 12. Выражения. Уравнения. Неравенства
- •54. Выражения и их тождественные преобразования
- •Упражнения
- •55. Числовые равенства и неравенства
- •Упражнения
- •56. Уравнения с одной переменной
- •2. Равносильные уравнения. Теоремы о равносильности уравнений
- •3. Решение уравнений с одной переменной
- •Упражнения
- •57. Неравенства с одной переменной
- •2. Равносильные неравенства. Теоремы о равносильности неравенств
- •3. Решение неравенств с одной переменной
- •Упражнения
- •58. Основные выводы § 12
- •Упражнения
- •Глава III. Натуральные числа и нуль
- •§ 13. Из истории возникновения понятия натурального числа
- •§ 14. Аксиоматическое построение системы натуральных чисел
- •59. Об аксиоматическом способе построения теории
- •Упражнения
- •60. Основные понятия и аксиомы. Определение натурального числа
- •Упражнения
- •61. Сложение
- •62. Умножение
- •63. Упорядоченность множества натуральных чисел
- •Упражнения
- •64. Вычитание
- •Упражнения
- •65. Деление
- •66. Множество целых неотрицательных чисел
- •Упражнения
- •67. Метод математической индукции
- •Упражнения
- •68. Количественные натуральные числа. Счет
- •Упражнения
- •69. Основные выводы § 14
- •70. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- •Упражнения
- •Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
- •71. Теоретико-множественный смысл суммы
- •Упражнения
- •72. Теоретико-множественный смысл разности
- •Упражнения
- •73. Теоретико-множественный смысл произведения
- •Упражнения
- •74. Теоретико-множественный смысл частного натуральных чисел
- •Упражнения
- •75. Основные выводы § 15
- •§16. Натуральное число как мера величины
- •76. Понятие положительной скалярной величины и ее измерения
- •Упражнения
- •77. Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности
- •Упражнения
- •78. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин
- •79. Основные выводы § 16
- •80. Позиционные и непозиционные системы счисления
- •81. Запись числа в десятичной системе счисления
- •Упражнения
- •82. Алгоритм сложения
- •Упражнения
- •83. Алгоритм вычитания
- •Упражнения
- •84. Алгоритм умножения
- •Упражнения
- •85. Алгоритм деления
- •86. Позиционные системы счисления, отличные от десятичной
- •87. Основные выводы § 17
- •§ 18. Делимость натуральных чисел
- •88. Отношение делимости и его свойства
- •89. Признаки делимости
- •90. Наименьшее общее кратное и наибольший общий делитель
- •2. Основные свойства наименьшего общего кратного и наибольшего общего делителя чисел
- •3. Признак делимости на составное число
- •Упражнения
- •91. Простые числа
- •92. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- •93. Основные выводы § 18
- •3. Дистрибутивности:
- •§ 19. О расширении множества натуральных чисел
- •94. Понятие дроби
- •Упражнения
- •95. Положительные рациональные числа
- •96. Множество положительных рациональных чисел как расширение
- •97. Запись положительных рациональных чисел в виде десятичных дробей
- •98. Действительные числа
- •99. Основные выводы § 19
- •Глава IV. Геометрические фигуры и величины
- •§ 20. Из истории возникновения и развития геометрии
- •1. Сущность аксиоматического метода в построении теории
- •2. Возникновение геометрии. Геометрия Евклида и геометрия Лобачевского
- •3. Система геометрических понятий, изучаемых в школе. Основные свойства принадлежности точек и прямых, взаимного расположения точек на плоскости и прямой.
- •§ 21. Свойства геометрических фигур на плоскости
- •§ 22. Построение геометрических фигур
- •1. Элементарные задачи на построение
- •2. Этапы решения задачи на построение
- •Упражнения
- •3. Методы решения задач на построение: преобразования геометрических фигур на плоскости: центральная, осевая симметрии, гомотетия, движение.
- •Основные выводы
- •§24. Изображение пространственных фигур на плоскости
- •1. Свойства параллельного проектирования
- •2. Многогранники и их изображение
- •Тетраэдр Куб Октаэдр
- •Упражнения
- •3. Шар, цилиндр, конус и их изображение
- •Основные выводы
- •§ 25. Геометрические величины
- •1. Длина отрезка и ее измерение
- •1) Равные отрезки имеют равные длины;
- •2) Если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей.
- •Упражнения
- •2. Величина угла и ее измерение Каждый угол имеет величину. Специального названия для нее в
- •1) Равные углы имеют равные величины;
- •2) Если угол состоит из двух углов, то его величина равна сумме величин его частей.
- •Упражнения
- •1) Равные фигуры имеют равные площади;
- •2) Если фигура состоит из двух частей, то ее площадь равна сумме площадей этих частей.
- •4. Площадь многоугольника
- •5. Площадь произвольной плоской фигуры и ее измерение
- •Упражнения
- •Основные выводы
- •1. Понятие положительной скалярной величины и ее измерение
- •1) Масса одинакова у тел, уравновешивающих друг друга на весах;
- •2) Масса складывается, когда тела соединяются вместе: масса нескольких тел, взятых вместе, равна сумме их масс.
- •Заключение
- •Список литературы
62. Умножение
По правилам построения аксиоматической теории определить умножение натуральных чисел можно, используя отношение «непосредственно следовать за» и понятия, введенные ранее.
Предварим определение умножения следующими рассуждениями.
Если любое натуральное число аумножить на 1. то получитсяа,т.е. имеет место равенствоа 1 = аи мы получаем правило умножения любого натурального числа на 1. Но как умножать числоа на натуральное числоb, отличное от 1? Воспользуемся следующим фактом:
если известно, что 7 5 = 35, то для нахождения произведения 7 6 достаточно к 35 прибавить 7, так как 7 6 = 7(5 + I) = 7 5 + 7. Таким образом, произведениеа b' можно найти, если известно произведение:а b=а b+а.
Отмеченные факты и положены в основу определения умножения натуральных чисел. Кроме того, в нем используется понятие алгебраической операции.
Определение.Умножением натуральных чисел называется алгебраическая операция, обладающая свойствами:
1) ( а N) а 1 а.
2) ( а, b N) а b' = а b+а.
Число а b называется произведением чисела и b, а сами числаа и b- множителями.
Особенностью данного определения, так же как и определения сложения натуральных чисел, является то, что заранее неизвестно, существует ли алгебраическая операция, обладающая указанными свойствами, а если существует, то единственная ли она. В связи с этим возникает необходимость в доказательстве этого факта..
Теорема 7. Умножение натуральных чисел существует, и оно единственно.
Доказательство этой теоремы аналогично доказательству теоремы 3.
Используя определение умножения, теорему 7 и таблицу сложения, можно вывести таблицу умножения однозначных чисел. Делаем это в такой последовательности: сначала рассматриваем умножение на 1, затем на 2 и т.д.
Легко видеть, что умножение на 1 выполняется по свойству 1 в определении умножения: 1 • 1 = 1; 2 • 1 = 2; 3 • 1 = 3 и т.д.
Рассмотрим теперь случаи умножения на 2: 1 • 2 = 1 • 1'= 1 • 1 + 1 = 1 + 1 = 2- переход от произведения 1 • 2 к произведению 1 •1' осуществлен согласно принятым ранее обозначениям; переход от выражения 1 •1' к выражению 1 + 1 - на основе второго свойства умножения; произведение 1 • 1 заменено числом 1 в соответствии с уже полученным результатом в таблице; и, наконец, значение выражения 1 + 1 найдено в соответствии с таблицей сложения. Аналогично: 2 • 2 = 2 •1' =2 • I + 2 = 2 + 2 = 4; 3 • 2 = 3 • 1' = 3 • 1 + 3 = 3 + 3 = 6.
Если продолжить этот процесс, получим всю таблицу умножения однозначных чисел.
Как известно, умножение натуральных чисел коммутативно, ассоциативно и дистрибутивно относительно сложения.При аксиоматическом построении теории удобно доказывать эти свойства, начиная с дистрибутивности.
Но в связи с тем. что свойство коммутативности будет доказано позже, необходимо рассматривать дистрибутивность справа и слева относительно сложения.
Теорема 8. ( а, b, с N) (а + b) • с = а • с + b • с.
Теорема 9. ( а, b, с N) с • (а + b) = с • а + с • b
Это свойство дистрибутивности слева относительно сложения. Доказывается оно аналогично тому, как это сделано для дистрибутивности справа.
Теорема 10. ( а, b, с N) (а • b) • с = а • ( b • с).
Это свойство ассоциативности умножения. Его доказательство основывается на определении умножения и теоремах 4- 9.
Теорема 11. ( а, b N) а • b = b • а.
Доказательство этой теоремы по форме аналогично доказательству коммутативного свойства сложения.
Поход к умножению, рассматриваемый в аксиоматической теории, является основой обучения умножению в начальной школе. Умножение на 1, как правило, определяется, а второе свойство умножения иcпользуется при составлении таблицы умножения однозначных чисел и вычислениях.
В начальном курсе изучаются все рассмотренные нами свойства умножения: и коммутативность, и ассоциативность, и дистрибутивность.
Упражнения
1.. Используя определение умножения, найдите значения выражений: а) 3 • 3; 6) 3 • 4; в) 4 • 3.
2. Запишите свойство дистрибутивности умножения слева относительно сложения и докажите его. Какие преобразования выражений возможны на его основе? Почему возникла необходимость в рассмотрении дистрибутивности умножения слева и справа относительно сложения?
3. Докажите свойство ассоциативности умножения натуральных чисел. Какие преобразования выражений возможны на его основе? Изучается ли это свойство в начальной школе?
4. Докажите свойство коммутативности умножения. Приведите примеры его использования в начальном курсе математики.
5. Какие свойства умножения могут быть использованы при нахождении значения выражения:
а) 5 • (10 + 4); 6)125 • 15 • 6; в) (8 • 379) • 125?
6. Известно, что 37 • 3 = 111. Используя это равенство, вычислите:
а) 37 • 18; 6) 185 • 12.
Все выполненные преобразования обоснуйте.
7. Определите значение выражения, не выполняя письменных вычислений. Ответ обоснуйте:
а) 8962 • 8 + 8962 • 2; б) 63402 • 3 + 63402 • 97; в) 849 +849 • 9.
8.. Какие свойства умножения будут использовать учащиеся начальных классов, выполняя следующие задания:
Можно ли, не вычисляя, сказать, значения каких выражений будут одинаковыми:
а) 3 • 7 + 3 • 5; 6) 7 • (5 + 3): в) (7 + 5) • 3?
Верны ли равенства:
а) 18 • 5 • 2 = 18 • (5 • 2); в) 5 • 6 + 5 • 7 = (6 + 7) • 5;
б) (3 • 10) •17 = 3 • 10 • 17; г) 8 • (7 + 9) = 8 • 7 + 9 • 8? Можно ли, не выполняя вычислений, сравнить значения выражений:
а) 70 • 32 + 9 • 32 ...79 • 30 + 79 • 2; 6) 87 • 70 + 87 • 8 ... 80 • 78 + 7 • 78?
Лекция 33. Вычитание и деление целых неотрицательных чисел
План:
1. Упорядоченность множества натуральных чисел.
2. Определение вычитания целых неотрицательных чисел
3. Деление целых неотрицательных чисел. Невозможность деленияна нуль. Деление с остатком.