
- •050708 (031200) Педагогика и методика начального образования дпп. Ф. 06. Математика
- •Глава I. Элементы логики
- •§ 1. Множества и операции над ними
- •1. Понятие множества и элемента множества
- •2. Способы задания множеств
- •3. Отношения между множествами. Подмножество. Равные множества. Универсальное множество. Круги Эйлера. Числовые множества.
- •4. Пересечение множеств
- •5. Объединение множеств
- •6. Свойства пересечения и объединения множеств
- •7. Вычитание множеств. Дополнение множества до универсального
- •8. Понятие разбиения множества на классы с помощью одного, двух, трех свойств
- •9. Декартово произведение множеств
- •10. Число элементов в объединении и разности конечных множеств
- •11. Число элементов в декартовом произведении конечных множеств
- •12. Основные понятия:
- •§ 2. Математические понятия
- •3. Способы определения понятий
- •4. Основные выводы
- •§ 3. Математические предложения
- •§ 4. Математическое доказательство
- •26. Схемы дедуктивных умозаключений.
- •§5. Текстовая задача и процесс ее решения
- •29. Структура текстовой задачи
- •30. Методы и способы решения текстовых задач
- •31. Этапы решения задачи и приемы их выполнения
- •2. Поиск и составление плана решения задачи
- •3. Осуществление плана решения задачи
- •4. Проверка решения задачи
- •5. Моделирование в процессе решения текстовых задач
- •Упражнения
- •32. Решение задач «на части»
- •Упражнения
- •33. Решение задач на движение
- •Упражнения
- •34. Основные выводы.
- •§6. Комбинаторные задачи и их решение
- •§ 7. Алгоритмы и их свойства
- •Упражнения
- •Упражнения
- •Глава II. Элементы алгебры
- •§ 8. Соответствия между двумя множествами
- •41. Понятие соответствия. Способы задания соответствий
- •2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
- •3. Взаимно-однозначные соответствия
- •Упражнения
- •42. Взаимно однозначные соответствия. Понятие взаимно однозначного отображения множества х на множество y
- •2. Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
- •Упражнения
- •43. Основные выводы § 8
- •§ 9. Числовые функции
- •44. Понятие функции. Способы задания функций
- •2. График функции. Свойство монотонности функции
- •Упражнения
- •45. Прямая и обратная пропорциональности
- •Упражнения
- •46. Основные выводы § 9
- •§10. Отношения на множестве
- •47. Понятие отношения на множестве
- •Упражнения
- •48. Свойства отношений
- •R рефлексивно на х ↔ х r х для любого х € X.
- •R симметрично на х ↔ (х r y →yRx).
- •49. Отношения эквивалентности и порядка
- •Упражнения
- •50. Основные выводы § 10
- •§ 11. Алгебраические операции на множестве
- •51. Понятие алгебраической операции
- •Упражнения
- •52. Свойства алгебраических операций
- •Упражнения
- •53. Основные выводы § 11
- •§ 12. Выражения. Уравнения. Неравенства
- •54. Выражения и их тождественные преобразования
- •Упражнения
- •55. Числовые равенства и неравенства
- •Упражнения
- •56. Уравнения с одной переменной
- •2. Равносильные уравнения. Теоремы о равносильности уравнений
- •3. Решение уравнений с одной переменной
- •Упражнения
- •57. Неравенства с одной переменной
- •2. Равносильные неравенства. Теоремы о равносильности неравенств
- •3. Решение неравенств с одной переменной
- •Упражнения
- •58. Основные выводы § 12
- •Упражнения
- •Глава III. Натуральные числа и нуль
- •§ 13. Из истории возникновения понятия натурального числа
- •§ 14. Аксиоматическое построение системы натуральных чисел
- •59. Об аксиоматическом способе построения теории
- •Упражнения
- •60. Основные понятия и аксиомы. Определение натурального числа
- •Упражнения
- •61. Сложение
- •62. Умножение
- •63. Упорядоченность множества натуральных чисел
- •Упражнения
- •64. Вычитание
- •Упражнения
- •65. Деление
- •66. Множество целых неотрицательных чисел
- •Упражнения
- •67. Метод математической индукции
- •Упражнения
- •68. Количественные натуральные числа. Счет
- •Упражнения
- •69. Основные выводы § 14
- •70. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- •Упражнения
- •Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
- •71. Теоретико-множественный смысл суммы
- •Упражнения
- •72. Теоретико-множественный смысл разности
- •Упражнения
- •73. Теоретико-множественный смысл произведения
- •Упражнения
- •74. Теоретико-множественный смысл частного натуральных чисел
- •Упражнения
- •75. Основные выводы § 15
- •§16. Натуральное число как мера величины
- •76. Понятие положительной скалярной величины и ее измерения
- •Упражнения
- •77. Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности
- •Упражнения
- •78. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин
- •79. Основные выводы § 16
- •80. Позиционные и непозиционные системы счисления
- •81. Запись числа в десятичной системе счисления
- •Упражнения
- •82. Алгоритм сложения
- •Упражнения
- •83. Алгоритм вычитания
- •Упражнения
- •84. Алгоритм умножения
- •Упражнения
- •85. Алгоритм деления
- •86. Позиционные системы счисления, отличные от десятичной
- •87. Основные выводы § 17
- •§ 18. Делимость натуральных чисел
- •88. Отношение делимости и его свойства
- •89. Признаки делимости
- •90. Наименьшее общее кратное и наибольший общий делитель
- •2. Основные свойства наименьшего общего кратного и наибольшего общего делителя чисел
- •3. Признак делимости на составное число
- •Упражнения
- •91. Простые числа
- •92. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- •93. Основные выводы § 18
- •3. Дистрибутивности:
- •§ 19. О расширении множества натуральных чисел
- •94. Понятие дроби
- •Упражнения
- •95. Положительные рациональные числа
- •96. Множество положительных рациональных чисел как расширение
- •97. Запись положительных рациональных чисел в виде десятичных дробей
- •98. Действительные числа
- •99. Основные выводы § 19
- •Глава IV. Геометрические фигуры и величины
- •§ 20. Из истории возникновения и развития геометрии
- •1. Сущность аксиоматического метода в построении теории
- •2. Возникновение геометрии. Геометрия Евклида и геометрия Лобачевского
- •3. Система геометрических понятий, изучаемых в школе. Основные свойства принадлежности точек и прямых, взаимного расположения точек на плоскости и прямой.
- •§ 21. Свойства геометрических фигур на плоскости
- •§ 22. Построение геометрических фигур
- •1. Элементарные задачи на построение
- •2. Этапы решения задачи на построение
- •Упражнения
- •3. Методы решения задач на построение: преобразования геометрических фигур на плоскости: центральная, осевая симметрии, гомотетия, движение.
- •Основные выводы
- •§24. Изображение пространственных фигур на плоскости
- •1. Свойства параллельного проектирования
- •2. Многогранники и их изображение
- •Тетраэдр Куб Октаэдр
- •Упражнения
- •3. Шар, цилиндр, конус и их изображение
- •Основные выводы
- •§ 25. Геометрические величины
- •1. Длина отрезка и ее измерение
- •1) Равные отрезки имеют равные длины;
- •2) Если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей.
- •Упражнения
- •2. Величина угла и ее измерение Каждый угол имеет величину. Специального названия для нее в
- •1) Равные углы имеют равные величины;
- •2) Если угол состоит из двух углов, то его величина равна сумме величин его частей.
- •Упражнения
- •1) Равные фигуры имеют равные площади;
- •2) Если фигура состоит из двух частей, то ее площадь равна сумме площадей этих частей.
- •4. Площадь многоугольника
- •5. Площадь произвольной плоской фигуры и ее измерение
- •Упражнения
- •Основные выводы
- •1. Понятие положительной скалярной величины и ее измерение
- •1) Масса одинакова у тел, уравновешивающих друг друга на весах;
- •2) Масса складывается, когда тела соединяются вместе: масса нескольких тел, взятых вместе, равна сумме их масс.
- •Заключение
- •Список литературы
5. Моделирование в процессе решения текстовых задач
Рассматривая процесс решения текстовой задачи, мы неоднократно использовали термин «модель», «моделирование». Это не случайно. Во всех науках модели выступают как мощное орудие познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение и исследование модели, отображающей лишь какую-то грань реальности и потому более простую, чем эта реальность.
Ранее мы установили, что текстовая задача - это словесная модель некоторого явления (ситуации, процесса). Чтобы решить такую задачу, надо перевести ее на язык математических действий, т.е. построить ее математическую модель.
Вообще, математическая модель - это описание какого-либо реального процесса на математическом языке.
Математической моделью текстовой задачи является выражение (либо запись по действиям), если задача решается арифметическим методом, и уравнение (либо система уравнений), если задача решается алгебраическим методом.
В процессе решения задачи четко выделяются три этапа математического моделирования:
I этап - это перевод условий задачи на математический язык; при этом выделяются необходимые для решения данные и искомые и математическими способами описываются связи между ними;
II этап – внутримодельное решение (т.е. нахождение значения выражения, выполнение действий, решение уравнения);
III этап - интерпретация, т.е. перевод полученного решения на тот язык, на котором была сформулирована исходная задача.
Проиллюстрируем сказанное на примере решения алгебраическим методом следующей задачи: «В одном вагоне электропоезда было пассажиров в 2 раза больше, чем в другом. Когда из первого вагона вышли 3 человека, а во второй вагон вошли 7 человек, то в обоих вагонах пассажиров стало поровну. Сколько пассажиров было в каждом вагоне первоначально?»
Обозначим через х первоначальное число пассажиров во втором вагоне. Тогда число пассажиров в первом вагоне – 2х. Когда из первого вагона вышли 3 человека, в нем осталось 2х - 3 пассажира. Во второй вагон вошли 7 человек, значит, в нем стало х + 7 пассажиров. Так как в обоих вагонах пассажиров стало поровну, то можно записать, что 2х - 3 = х + 7. Получили уравнение - это математическая модель данной задачи.
Следующий этап - решение полученного уравнения вне зависимости от того, что в нем обозначает переменная х: переносим в левую часть члены уравнения, содержащие х, а в правую - не содержащие х, причем у переносимых членов знаки меняем на противоположные: 2х – х = 7 + 3. Приводим подобные члены и получаем, что х = 10.
Последний, третий этап - используем полученное решение, чтобы ответить на вопрос задачи: во втором вагоне было первоначально 10 человек, а в первом - 20 (10-2 = 20).
Наибольшую сложность в процессе решения текстовой задачи представляет перевод текста с естественного языка на математический, т.е. I этап математического моделирования. Чтобы облегчить эту процедуру, строят вспомогательные модели - схемы, таблицы и др. Тогда процесс решения задачи можно рассматривать как переход от одной модели к другой: от словесной модели реальной ситуации, представленной в задаче, к вспомогательной (схемы, таблицы, рисунки и т.д.); от нее - к математической, на которой и происходит решение задачи.
Такой подход к процессу решения задачи разделяют и психологи. Они считают, что процесс решения задачи есть сложный процесс поиска системы моделей и определенной последовательности перехода от одного уровня моделирования к другому, более обобщенному, что решение задачи человеком есть процесс ее переформулирования. При этом используется такая операция мышления, как анализ через синтез, когда объект в процессе мышления включается во все новые связи и в силу этого выступает во все новых качествах. Главным средством переформулирования является моделирование.
Прием моделирования заключается в том, что для исследования какого-либо объекта (в нашем случае текстовой задачи) выбирают (или строят) другой объект, в каком-то отношении подобный тому, который исследуют. Построенный новый объект изучают, с его помощью решают исследовательские задачи, а затем результат переносят на первоначальный объект.
Модели бывают разные, и поскольку в литературе нет единообразия в их названиях, уточним терминологию, которую будем использовать в дальнейшем.
Все модели можно разделить на схематизированные и знаковые по видам средств, используемых для их построения.
Схематизированные модели, в свою очередь, делятся на вещественные и графические в зависимости от того, какое действие они обеспечивают. Вещественные (или предметные) модели текстовых задач обеспечивают физическое действие с предметами. Они могут строиться из каких-либо предметов (пуговиц, спичек, бумажных полосок и т.д.), они могут быть представлены разного рода инсценировками сюжета задач. К этому виду моделей причисляют и мысленное воссоздание реальной ситуации, описанной в задаче, в виде представлений.
Графические модели используются, как правило, для обобщенного, схематического воссоздания ситуации задачи. К графическим следует отнести следующие виды моделей:
рисунок;
условный рисунок;
чертеж;
схематичный чертеж (или просто схема).
Разъясним суть этих моделей на примере задачи: «Лида нарисовала 4 домика, а Вова на 3 домика больше. Сколько домиков нарисовал Вова?»
Рисунок в качестве графической модели этой задачи имеет вид (рис. 40).
Чертеж как графическая модель выполняется при помощи чертежах инструментов с соблюдением заданных отношений (рис. 42).
Схематический чертеж (схема) может выполняться от руки, на нем указываются все данные и искомые (рис. 43).
Рис. 43
Знаковые модели могут быть выполнены как на естественном, так и на математическом языке. К знаковым моделям, выполненным на естественном языке, можно отнести краткую запись задачи, таблицы. Например, краткая запись задачи о домиках Лиды и Вовы может быть такой:
Л. - 4 д.
В. - ?, на 3 д. больше, чем Л.
Таблица как вид знаковой модели используется главным образом тогда, когда в задаче имеется несколько взаимосвязанных величин, каждая из которых задана одним или несколькими значениями. Пример такой таблицы см. на с. 113.
Знаковыми моделями текстовых задач, выполненными на математическом языке, являются: выражение, уравнение, система уравнений, запись решения задачи по действиям. Поскольку на этих моделях происходит решение задачи, их называют решающими моделями. Остальные модели, все схематизированные и злаковые, выполненные на естественном языке, - это вспомогательные модели, которые обеспечивают переход от текста задачи к математической модели.
Не следует думать, что всякая краткая запись или чертеж, выполненные для данной задачи, являются ее моделями. Так как модель – это своеобразная копия задачи, то на ней должны быть представлены все ее объекты, все отношения между ними, указаны требования.
Для большинства текстовых задач приходится строить различные вспомогательные модели. С одной стороны, эти модели представляют собой результат анализа задачи, но с другой - построение таких моделей организует и направляет детальный и глубокий анализ задачи.
Рассмотрим процесс решения арифметическим методом текстовой задачи о пассажирах в двух вагонах.
Предварительный анализ задачи позволяет выделить ее объекты - это пассажиры в двух вагонах поезда. О них известно, что:
В первом вагоне в 2 раза больше пассажиров, чем во втором.
Из первого вагона вышли 3 пассажира.
Во второй вошли 7 пассажиров.
В первом и втором вагонах пассажиров стало поровну. В задаче два требования:
1) Сколько пассажиров было первоначально в первом вагоне?
2) Сколько пассажиров было первоначально во втором вагоне? Построим графическую модель данной задачи в виде схематического чертежа (рис. 44).
По схеме сразу видно, что математическая модель данной задачи имеет вид:
7 + 3 - это число пассажиров во II вагоне, а
(7 + 3)2 - это число пассажиров в 1 вагоне.
Рис.
44