
- •050708 (031200) Педагогика и методика начального образования дпп. Ф. 06. Математика
- •Глава I. Элементы логики
- •§ 1. Множества и операции над ними
- •1. Понятие множества и элемента множества
- •2. Способы задания множеств
- •3. Отношения между множествами. Подмножество. Равные множества. Универсальное множество. Круги Эйлера. Числовые множества.
- •4. Пересечение множеств
- •5. Объединение множеств
- •6. Свойства пересечения и объединения множеств
- •7. Вычитание множеств. Дополнение множества до универсального
- •8. Понятие разбиения множества на классы с помощью одного, двух, трех свойств
- •9. Декартово произведение множеств
- •10. Число элементов в объединении и разности конечных множеств
- •11. Число элементов в декартовом произведении конечных множеств
- •12. Основные понятия:
- •§ 2. Математические понятия
- •3. Способы определения понятий
- •4. Основные выводы
- •§ 3. Математические предложения
- •§ 4. Математическое доказательство
- •26. Схемы дедуктивных умозаключений.
- •§5. Текстовая задача и процесс ее решения
- •29. Структура текстовой задачи
- •30. Методы и способы решения текстовых задач
- •31. Этапы решения задачи и приемы их выполнения
- •2. Поиск и составление плана решения задачи
- •3. Осуществление плана решения задачи
- •4. Проверка решения задачи
- •5. Моделирование в процессе решения текстовых задач
- •Упражнения
- •32. Решение задач «на части»
- •Упражнения
- •33. Решение задач на движение
- •Упражнения
- •34. Основные выводы.
- •§6. Комбинаторные задачи и их решение
- •§ 7. Алгоритмы и их свойства
- •Упражнения
- •Упражнения
- •Глава II. Элементы алгебры
- •§ 8. Соответствия между двумя множествами
- •41. Понятие соответствия. Способы задания соответствий
- •2. Граф и график соответствия. Соответствие, обратное данному. Виды соответствий.
- •3. Взаимно-однозначные соответствия
- •Упражнения
- •42. Взаимно однозначные соответствия. Понятие взаимно однозначного отображения множества х на множество y
- •2. Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
- •Упражнения
- •43. Основные выводы § 8
- •§ 9. Числовые функции
- •44. Понятие функции. Способы задания функций
- •2. График функции. Свойство монотонности функции
- •Упражнения
- •45. Прямая и обратная пропорциональности
- •Упражнения
- •46. Основные выводы § 9
- •§10. Отношения на множестве
- •47. Понятие отношения на множестве
- •Упражнения
- •48. Свойства отношений
- •R рефлексивно на х ↔ х r х для любого х € X.
- •R симметрично на х ↔ (х r y →yRx).
- •49. Отношения эквивалентности и порядка
- •Упражнения
- •50. Основные выводы § 10
- •§ 11. Алгебраические операции на множестве
- •51. Понятие алгебраической операции
- •Упражнения
- •52. Свойства алгебраических операций
- •Упражнения
- •53. Основные выводы § 11
- •§ 12. Выражения. Уравнения. Неравенства
- •54. Выражения и их тождественные преобразования
- •Упражнения
- •55. Числовые равенства и неравенства
- •Упражнения
- •56. Уравнения с одной переменной
- •2. Равносильные уравнения. Теоремы о равносильности уравнений
- •3. Решение уравнений с одной переменной
- •Упражнения
- •57. Неравенства с одной переменной
- •2. Равносильные неравенства. Теоремы о равносильности неравенств
- •3. Решение неравенств с одной переменной
- •Упражнения
- •58. Основные выводы § 12
- •Упражнения
- •Глава III. Натуральные числа и нуль
- •§ 13. Из истории возникновения понятия натурального числа
- •§ 14. Аксиоматическое построение системы натуральных чисел
- •59. Об аксиоматическом способе построения теории
- •Упражнения
- •60. Основные понятия и аксиомы. Определение натурального числа
- •Упражнения
- •61. Сложение
- •62. Умножение
- •63. Упорядоченность множества натуральных чисел
- •Упражнения
- •64. Вычитание
- •Упражнения
- •65. Деление
- •66. Множество целых неотрицательных чисел
- •Упражнения
- •67. Метод математической индукции
- •Упражнения
- •68. Количественные натуральные числа. Счет
- •Упражнения
- •69. Основные выводы § 14
- •70. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- •Упражнения
- •Лекция 36. Теоретико-множественный подход в построении множества целых неотрицательных чисел.
- •71. Теоретико-множественный смысл суммы
- •Упражнения
- •72. Теоретико-множественный смысл разности
- •Упражнения
- •73. Теоретико-множественный смысл произведения
- •Упражнения
- •74. Теоретико-множественный смысл частного натуральных чисел
- •Упражнения
- •75. Основные выводы § 15
- •§16. Натуральное число как мера величины
- •76. Понятие положительной скалярной величины и ее измерения
- •Упражнения
- •77. Смысл натурального числа, полученного в результате измерения величины. Смысл суммы и разности
- •Упражнения
- •78. Смысл произведения и частного натуральных чисел, полученных в результате измерения величин
- •79. Основные выводы § 16
- •80. Позиционные и непозиционные системы счисления
- •81. Запись числа в десятичной системе счисления
- •Упражнения
- •82. Алгоритм сложения
- •Упражнения
- •83. Алгоритм вычитания
- •Упражнения
- •84. Алгоритм умножения
- •Упражнения
- •85. Алгоритм деления
- •86. Позиционные системы счисления, отличные от десятичной
- •87. Основные выводы § 17
- •§ 18. Делимость натуральных чисел
- •88. Отношение делимости и его свойства
- •89. Признаки делимости
- •90. Наименьшее общее кратное и наибольший общий делитель
- •2. Основные свойства наименьшего общего кратного и наибольшего общего делителя чисел
- •3. Признак делимости на составное число
- •Упражнения
- •91. Простые числа
- •92. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- •93. Основные выводы § 18
- •3. Дистрибутивности:
- •§ 19. О расширении множества натуральных чисел
- •94. Понятие дроби
- •Упражнения
- •95. Положительные рациональные числа
- •96. Множество положительных рациональных чисел как расширение
- •97. Запись положительных рациональных чисел в виде десятичных дробей
- •98. Действительные числа
- •99. Основные выводы § 19
- •Глава IV. Геометрические фигуры и величины
- •§ 20. Из истории возникновения и развития геометрии
- •1. Сущность аксиоматического метода в построении теории
- •2. Возникновение геометрии. Геометрия Евклида и геометрия Лобачевского
- •3. Система геометрических понятий, изучаемых в школе. Основные свойства принадлежности точек и прямых, взаимного расположения точек на плоскости и прямой.
- •§ 21. Свойства геометрических фигур на плоскости
- •§ 22. Построение геометрических фигур
- •1. Элементарные задачи на построение
- •2. Этапы решения задачи на построение
- •Упражнения
- •3. Методы решения задач на построение: преобразования геометрических фигур на плоскости: центральная, осевая симметрии, гомотетия, движение.
- •Основные выводы
- •§24. Изображение пространственных фигур на плоскости
- •1. Свойства параллельного проектирования
- •2. Многогранники и их изображение
- •Тетраэдр Куб Октаэдр
- •Упражнения
- •3. Шар, цилиндр, конус и их изображение
- •Основные выводы
- •§ 25. Геометрические величины
- •1. Длина отрезка и ее измерение
- •1) Равные отрезки имеют равные длины;
- •2) Если отрезок состоит из двух отрезков, то его длина равна сумме длин его частей.
- •Упражнения
- •2. Величина угла и ее измерение Каждый угол имеет величину. Специального названия для нее в
- •1) Равные углы имеют равные величины;
- •2) Если угол состоит из двух углов, то его величина равна сумме величин его частей.
- •Упражнения
- •1) Равные фигуры имеют равные площади;
- •2) Если фигура состоит из двух частей, то ее площадь равна сумме площадей этих частей.
- •4. Площадь многоугольника
- •5. Площадь произвольной плоской фигуры и ее измерение
- •Упражнения
- •Основные выводы
- •1. Понятие положительной скалярной величины и ее измерение
- •1) Масса одинакова у тел, уравновешивающих друг друга на весах;
- •2) Масса складывается, когда тела соединяются вместе: масса нескольких тел, взятых вместе, равна сумме их масс.
- •Заключение
- •Список литературы
§5. Текстовая задача и процесс ее решения
Лекция 11. Текстовая задача и процесс ее решения
План:
1. Структура текстовой задачи
2. Методы и способы решения текстовых задач
3. Этапы решения задачи и приемы их выполнения
Кроме различных понятий, предложений, доказательств в любом математическом курсе есть задачи. В обучении математике младших школьников преобладают такие, которые называют арифметическими, текстовыми, сюжетными. Эти задачи сформулированы на естественном языке (их называют текстовыми): в них обычно описывается количественная сторона каких-то явлений, событий (поэтому их часто называют арифметическими или сюжетными); они представляют собой задачи на разыскание искомого и сводятся к вычислению неизвестного значения некоторой величины (поэтому их иногда называют вычислительными).
В данном пособии мы будем применять термин «текстовые задачи», поскольку он чаще других используется в методике обучения математике младших школьников.
Решению текстовых задач при начальном обучении уделяется огромное внимание. Связано это с тем, что такие задачи часто являются не только средством формирования многих математических понятий, но и главное - средством формирования умений строить математические модели реальных явлений, а также средством развития мышления детей.
Существуют различные методические подходы к обучению детей решению текстовых задач. Но какую бы методику обучения ни вы брал учитель, ему надо знать, как устроены такие задачи, и уметь их решать различными методами и способами.
29. Структура текстовой задачи
Как было сказано выше, любая текстовая задача представляет собой описание какого-либо явления (ситуации, процесса). С этой точки зрения текстовая задача есть словесная модель явления (ситуации, процесса). И, как во всякой модели, в текстовой задаче описывается не все явление в целом, а лишь некоторые его стороны, главным образом, его количественные характеристики. Рассмотрим, например, такую задачу: «Автомобиль выехал из пункта А со скоростью 60 км/ч. Через 2 ч вслед за ним выехал второй автомобиль со скоростью 90 км/ч. На каком расстоянии от А второй автомобиль догонит первый?»
В задаче описывается движение двух автомобилей. Как известно, любое движение характеризуется тремя величинами: пройденным расстоянием, скоростью и временем движения. В данной задаче известны скорости первого и второго автомобилей (60 км/ч и 90 км/ч), известно, что они прошли одно и то же расстояние от пункта А до места встречи, количественную характеристику которого и надо найти. Кроме того, известно, что первый автомобиль был в пути на 2 ч больше, чем второй.
Обобщая, можно сказать, что текстовая задача есть описание на естественном языке некоторого явления (ситуации, процесса) с требованием дать количественную характеристику какого-либо компонента этого явления, установить наличие или отсутствие некоторого отношения между компонентами или определить вид этого отношения.
Рассмотрим
еще одну задачу из начального курса
математики: «Свитер,
шапку и шарф связали из I
кг 200 г шерсти. На шарф потребовалась
на 100 г шерсти больше, чем на шапку, и на
400 г меньше, чем
на свитер. Сколько шерсти израсходовали
на каждую вещь?»
В задаче речь идет о расходовании шерсти на свитер, шапку и шарф. Относительно этих объектов имеются определенные утверждения и требования.
Утверждения:
Свитер, шапка и шарф связаны из 1200 г шерсти.
На шарф израсходовали на 100 г больше, чем на шапку.
На шарф израсходовали на 400 г меньше, чем на свитер.
Требования:
Сколько шерсти израсходовали на свитер?
Сколько шерсти израсходовали на шапку?
Сколько шерсти израсходовали на шарф?
Утверждения задачи называют условиями (или условием, как в начальной школе). В задаче обычно не одно условие, а несколько элементарных условий. Они представляют собой количественные или качественные характеристики объектов задачи и отношений между ними. Требований в задаче может быть несколько. Они могут быть сформулированы как в вопросительной, так и утвердительной форме. Условия и требования взаимосвязаны.
Систему взаимосвязанных условий и требований называют высказывательной моделью задачи.
Таким образом, чтобы понять, какова структура задачи, надо выявить ее условия и требования, отбросив все лишнее, второстепенное, не влияющее на ее структуру. Иными словами, надо построить высказывательную модель задачи.
Чтобы получить эту модель, надо текст задачи развернуть (сделать это можно письменно или устно), так как текст задачи, как правило, дается в сокращенном, свернутом виде. Для этого можно перефразировать задачу, построить ее графическую модель, ввести какие-либо обозначения и т.д.
Кроме того, вычленение условий задачи можно производить с разной глубиной. Глубина анализа условий и требований задачи зависит главным образом от того, знакомы ли мы с видом задач, к которому принадлежит заданная, и знаем ли мы способ решения таких задач.
Пример 1. Сформулируйте условия и требования задачи:
Две девочки одновременно побежали навстречу друг другу по спортивной дорожке, длина которой 420 м. Когда они встретились, первая пробежала на 60 м больше, чем вторая. С какой скоростью бежала каждая девочка, если они встретились через 30 с?
В задаче речь идет о движении двух девочек навстречу друг другу. Как известно, движение характеризуется тремя величинами: расстоянием, скоростью и временем.
Условия задачи:
Две девочки бегут навстречу друг другу.
Движение они начали одновременно.
Расстояние, которое они пробежали, - 420 м.
Одна девочка пробежала на 60 м больше, чем другая.
Девочки встретились через 30 с.
Скорость движения одной девочки больше скорости движения другой.
Требования задачи:
С какой скоростью бежала 1-я девочка?
С какой скоростью бежала 2-я девочка?
По отношению между условиями и требованиями различают:
а) определенные задачи - в них заданных условий столько, сколько необходимо и достаточно для выполнения требований;
б) недоопределенные задачи - в них условий недостаточно для получения ответа;
в) переопределенные задачи - в них имеются лишние условия.
В начальной школе недоопределенные задачи считают задачами с недостающими данными, а переопределенные - задачами с избыточными данными.
Например, задача «Возле дома росло 5 яблонь, 2 вишни и 3 березы. Сколько фруктовых деревьев росло возле дома?» является переопределенной, так как содержит лишнее условие.
Задача «Из зала вынесли сначала 12 стульев, потом еще 5. Сколько стульев осталось в зале?» является недоопределенной - в ней условий недостаточно, чтобы ответить на поставленный вопрос.
Уточним теперь смысл термина «решение задачи». Так сложилось, что этим термином обозначают разные понятия:
решением задачи называют результат, т.е. ответ на требование задачи;
решением задачи называют процесс нахождения этого результата, причем этот процесс рассматривают двояко: и как метод нахождения результата (например, говорят о решении задачи арифметическим способом) и как последовательность тех действий, которые выполняет решающий, применяя тот или иной метод (т.е. в данном случае под решением задачи понимается вся деятельность человека, решающего задачу).
Упражнения
1. В следующих задачах выделите условия и требования:
а) Два автобуса отправились одновременно из города в село, расстояние до которого 72 км. Первый автобус прибыл в село на 15 мин раньше второго. С какой скоростью шел каждый автобус, если скорость одного из них на 4 км/ч больше скорости другого?
б) Сумма двух чисел равна 199. Найдите эти числа, если одно из них больше другого на 61.
Задачи из упражнения 1 сформулируйте таким образом, чтобы предложение, содержащее требование, не содержало условий.
В задачах из упражнения 1 повелительную форму требований замените вопросительной, вопросительную - повелительной.
Решите задачи из упражнения I.
5. Даны условия задачи: «Собрали 42 кг огурцов и 5/7 всех огурцов засолили».
Из нижеследуемого списка выберите требования к данному условию и решите полученную задачу:
а) Сколько килограммов огурцов осталось незасоленными?
б) Сколько килограммов помидор осталось незасоленными?
в) Что больше - масса огурцов, которые посолили или масса огурцов, которые остались незасоленными?
6. Сформулируйте возможные требования к условию задачи:
а) Купили 12 м ткани и третью часть ткани израсходовали на платье.
б) Из деревни вышел пешеход, а через 2 ч вслед за ним выехал велосипедист. Скорость велосипедиста 10 км/ч, а скорость пешехода 5 км/ч.
7. Какие данные необходимы для ответа на следующее требование задачи:
а) Какая часть урока использована на решение задачи?
б) Сколько платьев сшили из купленной ткани?
в) Найдите периметр прямоугольника.
8. Ученику была предложена задача: «Велосипедист ехал 2 часа с некоторой скоростью. После того как он проедет 60 км с такой же скоростью, его путь станет равным 48 км. С какой скоростью ехал велосипедист?» Он решил ее так:
1)60-48= 12 (км)
2) 12:2 = 6 (км/ч)
Ответ: 6 км/ч - скорость велосипедиста.
Согласны ли вы с таким решением данной задачи?
9. Можете ли вы дать ответ на требование следующей задачи:
а) За 3 м ткани заплатили 60000 р. Во второй раз купили 6 м ткани. Сколько денег заплатили за ткань, купленную во второй раз?
б) Два мотоциклиста едут навстречу друг другу. Скорость одного них 62 км/ч, а скорость другого 54 км/ч. Через сколько часов мотоциклисты встретятся?
В случае если нельзя ответить на требование задачи, дополните ее условие и решите задачу.
10. Есть ли среди нижеприведенных задачи с лишними данными:
а) Объем комнаты равен 72 м³. Высота комнаты 3 м. Найдите площадь пола комнаты, если ее длина 6 м.
5) Для посадки леса выделили участок, площадь которого 300 га. Ду6ы посадили на 7/10 участка, а сосны на 3/10 участка. Сколько гектаров занято дубами и соснами?
В случае если в задаче есть лишние данные, то исключите их и решнте задачу.