
- •Среды обитания бактерий
- •Превращения соединений углерода
- •Превращения безазотистых органических соединений
- •Захороненный углерод и его мобилизация
- •Образование и окисление водорода
- •Биологическая фиксация азота
- •Аммонификация
- •Нитрификация.
- •Денитрификация
- •Превращения фосфора
- •Круговорот серы
- •Превращения калия
- •Превращения железа
- •Превращения марганца
- •Превращения алюминия
- •Другие элементы
- •Разложение растительных остатков и формирование подстилки
- •Образование и разложение гумуса
- •Участие почвенных микроорганизмов. В разрушении и новообразовании минералов
- •Литература
Другие элементы
За счет включения разных механизмов почвенные микроорганизмы участвуют, по-видимому, в превращениях всех без исключения элементов, которые имеются в земной коре. Практически нет ни одного элемента, который тем или иным путем не подвергался бы воздействию микроорганизмов или их метаболитов. Одни элементы вовлекаются в биологический круговорот, входя в состав органических веществ, в процессе ассимиляции, другие окисляются, восстанавливаются или аккумулируются, третьи осаждаются или растворяются, извлекаются из минералов, подвергаются миграции, включаются в комплексы и т. д. и т. п.
Очень важны превращения, связанные с микроэлементами, которые необходимы микроорганизмам в очень малых дозах, но при этом роль их необычайно велика, так как они входят в состав ферментов и определяют их активность. Такова, например, роль молибдена, входящего в активный центр ферментов азотного цикла — нитрогеназы и нитратредуктазы; кобальта, ответственного за функции витамина B12; меди, которая включается в простетическую группу ферментов— оксидаз.
Известен ряд микроэлементов, которые не входят непосредственно в молекулы ферментов, но косвенно влияют на их активность и направление обмена веществ. К таковым относятся мышьяк, цинк, бор и др. Мышьяк, например, входит в состав всех живых клеток в микроколичествах. Его превращения в почве связаны с деятельностью микроорганизмов. Содержание мышьяка в почвах обычно невысокое — от 0,001 до 0,0001%. Оно наиболее высоко в черноземах и в органогенных горизонтах почв лесной зоны. Количество мышьяка увеличивается очень сильно за счет техногенных процессов. В его превращениях, аккумуляции и миграции участвуют грибы и бактерии. Окисление арсенита в арсенат — процесс биологический, о чем свидетельствует угнетение его азидом натрия, подавляющим дыхание. Среди бактерий, обусловливающих процесс окисления арсенитов, были описаны неспоровые грамотрицательные палочки из группы псевдомонад. Некоторые микроорганизмы ответственны за удаление мышьяка из почвы путем образования газообразных его соединений. Часть мышьяка фиксируется (иммобилизуется) клетками микроорганизмов за счет включения в обменные внутриклеточные реакции.
Бор в почвах в основном входит в состав органических соединений, из которых он освобождается микроорганизмами. Роль бора проявляется в образовании и функционировании клубеньков на бобовых растениях, так как он участвует в развитии сосудистой системы растений. Бор влияет на азотфиксацию клубеньковых бактерий, азотобактера и цианобактерий, а также стимулирует развитие многих аэробных и анаэробных бактерий и грибов. При малом содержании бора в почве или в условиях, затрудняющих его выведение из органических соединений, микроорганизмы выступают как конкуренты высших растений в отношении этого элемента, прочно удерживая его в своих клетках в составе органических веществ.
Для многих элементов известны только отдельные звенья превращений, связанных с деятельностью почвенных микроорганизмов. Есть сведения, например, о связывании цинка органическими соединениями в метаболизме грибов; о включении кобальта в молекулу B12 при синтезе этого витамина и др.
Микроорганизмы способны к аккумуляции в своих клетках элементов, которые содержатся в микроколичествах в почвах. Методом радиоавтографии показано, что микробные клетки накапливают естественно-радиоактивные элементы, такие как уран, торий, радий. На пленке после периода экспонирования микробных колоний, выращенных в присутствии указанных элементов, подсчитывают число треков — следов радиоактивного распада элементов, аккумулированных микроорганизмами.
Тионовая бактерия Thiobacillus ferrooxidans вызывает окисление сульфидов и косвенно влияет на миграцию таких элементов, как Cu, Zn, Ni и других, путем создания активного химического окислителя Fe2(SO4)3. Его взаимодействия с соединениями урана и ванадия изменяют валентное состояние этих элементов.
Известна роль микроорганизмов в процессах фракционирования стабильных изотопов некоторых элементов — углерода, азота, селена, лития. Примером может служить деятельность бактерий участвующих в превращениях серы. Первичная сера Земли представлена сульфидами. Изотопный состав серы в горных породах подвержен значительным колебаниям. За стандарт изотопного состава серы принимается сера метеоритов. Отклонения в соотношении легких (32S) и тяжелых (33S, 34S, 36S) изотопов серы есть результат последующего разделения атомов разного веса. Появление кислорода в газовой оболочке Земли привело к образованию сульфатов. При их восстановлении биологическим путем сульфатредуцирующие бактерии производят фракционирование изотопов серы: в H2S они переводят атомы легкой серы 32S, а в остаточном сульфате накапливается избыток тяжелых изотопа 34S. Таким образом, изотопный состав серы океанических сульфатов утяжелен на несколько процентов по сравнению с серой метеоритов, а сульфидные месторождения обогащены легким изотопом серы. По возрасту биогенных отложений серных руд делают попытки определить время появления кислорода на Земле, так как оно примерно совпадает с началом сульфатредукции.
В естественных биогеохимических провинциях, где почва обогащена молибденом, медью, ванадием, свинцом, бором, марганцем, почвенные микроорганизмы проявляют повышенную способность к связыванию этих элементов по сравнению с обедненными провинциями, что связано, возможно, с адаптационными явлениями в отношении этих геохимических факторов среды.
Итак, вовлечение разных элементов в биологический круговорот идет разными путями и имеет разные механизмы. Углерод и азот вовлекаются в построение органических веществ и в основе их циклов лежат процессы синтеза и минерализации органических макромолекул, фиксация и возврат газообразных продуктов в атмосферу. Превращения фосфора и серы связаны с органическими веществами и разрушением минералов. В превращениях калия, железа, марганца, алюминия большую роль играют процессы разрушения и новообразования минералов, которые рассматриваются ниже. И превращения органических веществ, и разложение почвообразующих пород имеют две стороны: обеспечение растений элементами питания и роль в почвообразовании.
БИОЛОГИЧЕСКИЕ ПРОЦЕССЫ В ПОЧВООБРАЗОВАНИИ
Почвообразовательный процесс — это сложная совокупность явлений превращения и перемещения различных веществ в верхнем слое земной коры; взаимодействия малого биологического и большого геологического круговоротов веществ; баланса элементов, воды и тепла. Из разного сочетания этих явлений, которые в различной степени выражены в конкретных условиях, складывается определенный тип почвообразовательного процесса.
В каждом типе почвообразования можно выделить более общие процессы и частные, специфические. К общим относятся циклические процессы поступления и разложения органических веществ, биологической аккумуляции и выноса веществ из почвы, распада и синтеза вторичных минералов. Специфичны для каждого типа процессы гумусообразования и гумусонакопления, разложения первичных минералов и новообразования вторичных минералов. Среди частных почвообразовательных процессов выделяют макро- и микропроцессы. Первые охватывают всю почвенную толщу и ведут к образованию почвенного профиля, вторые сосредоточены в микрозонах, в отдельных очагах, что особенно характерно для некоторых микробиологических преобразований Процессы в пределах одного горизонта иногда называют мезопроцессами.
В последние годы в почвоведении развивается новое учение об элементарных почвенных процессах (ЭПП), основы которого были заложены трудами С. А. Захарова, С. С. Неуструева, Б. Б. Полынова. Под такими процессами понимают те, которые относятся только к почве. Они являются общими для всех типов, но их разное сочетание дает все разнообразие почв. И. П. Герасимов выделяет 13 таких элементарных почвенных процессов, другие исследователи – больше. Элементарными их назвали потому, что из них, как из кирпичиков, слагается весь почвообразовательный процесс. Эти процессы могут быть, в свою очередь, очень сложными. Некоторые из них имеют биологическую природу и в основе их лежит биохимический механизм.
Т.В. Аристовская (1980) предлагает по аналогии с ЭПП рассматривать и ЭПБП – элементарные почвенно-биологические процессы, относя к их числу следующие: 1 – разложение растительного опада; 2 – образование гумуса; 3 – разложение гумуса микроорганизмами; 4 – деструкция минералов почвообразующей породы почвенными микроорганизмами и их метаболитами; 5 – микробное минералообразование.
Кроме названных пяти процессов, которые обязательно проявляются во всех типах почв, есть еще ряд процессов характерных только для определенных типов почвообразования.