
- •Введение
- •1 Экология микроорганизмов
- •1.1 Среды обитания микроорганизмов
- •1.1.1 Биогенная среда обитания
- •1.1. 2 Абиогенные субстраты
- •1.1.2.1 Почва как среда обитания микробов
- •1.2 Взаимоотношения организмов
- •1.2.1 Антагонизм
- •1.2.1. 1 Хищничество
- •1.2.1.2 Паразитизм
- •1.2.2 Комменсализм
- •1.2.3 Нейтрализм
- •1.2.4 Мутуализм (симбиоз)
- •2 Экология микроорганизмов почвы
- •2.1 Сукцессия
- •3 Свойства почвы, как среды обитания
- •3.1 Гипергенез
- •3.1.1 Минералогический, механический и химический состав почвообразующих пород
- •3.1.1.1 Характеристика первичных и вторичных минералов
- •3.1.1.2 Механический состав почвообразующих пород и почв
- •3.1.1.3 Химический состав отдельных фракций почв
- •3.2 Почвообразовательный процесс
- •3.2.1 Роль микроорганизмов в образовании почвы
- •3.3 Состав и свойства почвы
- •3.4 Основные типы почв и их распространение
- •3.5 Плодородие почвы
- •4 Растения
- •4.1 Вегетативные органы растений
- •4.1.1 Лист
- •4.1.1.1 Морфология, анатомия листа и его происхождение
- •4.1.1.2 Физиология листа
- •4.1.2 Стебель
- •4.1.3 Корень растения
- •4.1.3.1 Корневые волоски
- •4.1.3.2 Микориза
- •5 Минеральное питание растений
- •5.1 Роль азота в питании растений
- •5.1.1 Превращения азота в почве
- •5.1.2 Круговорот азота
- •5.2 Роль фосфора в питании растений
- •5.2.1 Содержание и формы соединений фосфора в почвах
- •5.2.2 Круговорот фосфора
- •5.3 Роль калия в питании растений
- •5.3.1 Состояние калия в почве
- •5.4 Роль микроэлементов в питании растений
- •6 Удобрения в сельскохозяйственном производстве
- •6.1 Азотные удобрения
- •5.4 Фосфорные удобрения
- •6.3 Калийные удобрения
- •7 Взаимодействие микроорганизмов и растений
- •7.1 Азотфиксация микроорганизмами
- •7.1.1 Открытие азотфиксирующих бактерий
- •7.1.2 Клубеньковые бактерии бобовых
- •7.1.2.1 Морфология и физиология клубеньковых бактерий
- •7.1.2.2 Специфичность и активность клубеньковых бактерий
- •7.1.2.3 Инфицирование бобового растения клубеньковыми бактериями
- •7.1.2.4 Этапы развития симбиоза ризобий с бобовыми
- •7.1.2.5 Систематика ризобий
- •7.1.2.6 Морфолого-анатомическая характеристика клубеньков в их онтогенезе
- •7.1.2.7 Организация клубеньков и биохимия азотфиксации
- •7.1.2.8 Диазотрофы
- •7.1.3 Факторы, определяющие симбиотические взаимоотношения клубеньковых бактерий с бобовыми растениями
- •7.1.4 Распространение клубеньковых бактерий в природе
- •7.2 Клубеньки у растений, не относящихся к бобовым
- •7.3 Внекорневые азотфиксирующие симбионты
- •7.4 Везикулярно-арбускулярная микориза
- •7.5 Ризосферная микрофлора
- •7.6 Свободноживущие азотфиксирующие микроорганизмы
- •7.7 Ассоциативные азотфиксаторы
- •8 Механизм биологической фиксации молекулярного азота
- •8.1 Преинфекционные (сигнальные) взаимодействия
- •8.2 Структурная основа симбиоза
- •8.3 Механизм взаимодействия растения и азотфиксатора
- •8.4 Энергетическое обеспечение азотфиксации
- •8.5 Ассимиляция фиксированного углерода
- •9 Иммобилизация фосфора микроорганизмами
- •9.1 Действие фосфатмобилизующих микроорганизмов на минеральные частички
- •10 Применение микроорганизмов в качестве «живых удобрений»
- •10.1 Применение азотфиксаторов на практике
- •10.1.1 Азотфиксирующие препараты
- •10.1.2 Фосфатмобилизирующие препараты
- •10.1.3 Кремнебактерин
- •10.1.4 Комплексные микробиологические удобрения
- •Литература
- •Приложение а (информационное) Глоссарий
- •Приложение в (информационное) Представители азотфиксаторов
- •Приложение г (обязательное) Некоторые методики изучения активности микроорганизмов
- •Методика уменьшения лизогенности штаммов Bacillus sp.
- •Содержание
7.4 Везикулярно-арбускулярная микориза
Наиболее древней формой симбиоза растений с микроорганизмами является микориза (возникла 400-450 млн. лет назад, а бобово-ризобиальный симбиоз – 60-70 млн. лет назад), которая образуется при колонизации грибами корней растений. Микоризы образуются у 90 % видов наземных растений. При этом грибы являются посредниками между растениями и почвой, обеспечивая хозяев питательными веществами. Выделяют эндомикоризу (гифы гриба проникают внутрь клеток растений) и эктомикоризу (факультативна для обоих симбионтов).
Большое распространение имеет неспецифичная форма эндомикоризы – везикулярно-арбускулярная микориза (ВАМ), образуемая большинством наземных растений. ВАМ образуется под действием грибов-зигомицетов из порядка Glomales, для которых симбиоз является облигатной стадией. Для растений же ВАМ может быть как облигатным (многолетние формы и растения со слабо развитой корневой системой), так и факультативным. ВАМ растения в основном образуют при недостатке фосфора.
Развитие ВАМ можно разделить на три этапа: преинфекционные взаимодействия, формирование межклеточного мицелия, развитие внутриклеточной симбиотической структуры. На первом этапе споры гриба прорастают в почве под действием растительных выделений и образуют специальные структуры прикрепления – апрессории. Во втором этапе из апрессорий во внутрь корня начинает расти инфекционная гифа, проникая через эпидермис в ткани кортекса, ветвится и образует мицелий. На третьем этапе в местах тесного контакта мицелия с клетками гифы проникают в растительные клетки, где образуются арбускулы – разветвленные впячивания сложной формы, содержащие гифу гриба, окруженную растительной плазмалеммой и клеточной стенкой. Арбускулы являются местами наиболее интенсивного обмена партнеров метаболитами, в частности передачи в растение фосфатов, поглощаемых грибом из почвы. Арбускулы существуют в течение нескольких дней, после лизируются хозяином, а взамен гифы в кортексе корня образуют новые арбускулы.
Весь процесс образования ВАМ у растений контролируется комплексом симбиотических генов (например, SYM-8, SYM-19 и SYM-30 гены гороха), аналогичных nod-генам. У бобовых процесс образования и бобово-ризобильного симбиоза, и ВАМ контролируется одними и теми же генами (например, SYM гены гороха).
Мицелии Glomus fasciculatum в ВАМ переводят нерастворимые формы фосфатов в растворимые, обеспечивая растение фосфатами. Таким образом, грибы-зигомицеты из порядка Glomales могут быть использованы в сельском хозяйстве для обеспечения растений фосфатами.
7.5 Ризосферная микрофлора
Высшие растения, являясь основным источником питательных веществ для преобладающего числа микробного населения почв -гетеротрофов, - оказывают существенное влияние на микробные ценозы. Зоны, непосредственно примыкающие к корням живых растений, являются областями активного развития микроорганизмов. Это связано, прежде всего, с выделениями из корней (экзосмосом) органических веществ, синтезированных растениями. Совокупность микроорганизмов, содержащихся в большом количестве в узкой зоне вокруг корней, называют ризосферной микрофлорой, а саму зону -ризосферой.
Кроме того, существует представление о ризоплане - непосредственной поверхности корня, заселенной микробами. Ясно, что метаболизм (обмен веществ) корней оказывает большое влияние на почвенную среду, прилегающую к корням. Считают, например, что корни увеличивают кислотность примыкающих к ним микрослоев почвы за счет выделения углекислоты и Н+ ионов. Такие изменения возможны в пределах нескольких миллиметров вокруг корня. Важным источником стимуляции почвенной микробиоты является выделение корнями питательных веществ.
Патогенные и симбиотические микроорганизмы привязаны к ним или способны растворять стенку клеток корня и проникать внутрь цитоплазмы. Экзосмос органических веществ из корней растений обусловлен активными процессами, пассивной диффузией или выделениями из отмирающих клеток. Молодые корешки обычно покрыты слизистыми чехликами, обильно заселенными микробами.
В продуктах экзосмоса корней обнаружено большое количество различных веществ, в том числе 10 разных сахаров, 23 аминокислоты, 10 витаминов, полисахаридные слизи, органические кислоты и другие вещества. Характер выделений зависит от вида и возраста растений. В настоящее время еще нет достаточных сведений о процессах корневого экзосмоса и использования веществ микроорганизмами в условиях природной нестерильной среды.
Сфера воздействия корней на микрофлору в почве определяется лишь приблизительно но увеличению числа микробов по мере приближения к поверхности корня. Большинство трупп микроорганизмов обнаруживается в большем числе в ризосфере (Р), чем в окружающей почве (П), что можно выразить отношением: Р/П.
Иллюстрации к этому положению приведены в таблице 13.
Не все бактерии одинаково реагируют на стимулирующее действие корней. Так, грамотрицательные бактерии явно лучше развиваются в ризосфере, чем грамположительные неспорообразующие бактерии. Способность бактерий заселять зону корня связана не только с выделяемым веществом, но и с отношением к физическим факторам, антагонизму.
Многие исследователи обнаружили, что бактерии, способные разлагать целлюлозу, растворять фосфаты, использовать белки и сахара, синтезировать витамины и бактериальные полисахариды, - являются типичными обитателями ризосферы. Удается также отметить некоторую корреляцию между таксономическими и физиологическими группами бактерий в ризосфере. Так, например, виды Pseudomonas доминируют в ризосфере, а виды Arthrobacter - в окружающей почве. Представители обоих родов заметно различаются по потребностям в ростовых факторах.
Таблица 13 - Сравнение числа бактерий и актиномицетов в ризосфере пшеницы и в контрольной почве
Организмы |
Ризосферная почва |
Контрольная почва |
Р/П |
Бактерии Актиномицеты |
1200*106 46*106 |
53*106 7*106 |
23 7 |
Группы бактерий: Аммонификаторы Газообразующие анаэробы Анаэробы Денитрификаторы Аэробные целлюлозоразлагающие Анаэробные целлюлозоразлагающие Спорообразующие
|
500*106 39*104 12*106 126*106
7*105
9*103 930*103
|
4*106 3*104 6*106 1*105
1*105
3*103 575*103
|
125 13 2 1260
7
1 1 |
Меньше внимания уделялось актиномицетам, хотя их приуроченность к ризосфере установлена. Возможно, что в этих условиях они образуют активные вещества (антибиотики), угнетающие развитие патогенов на корнях. В этом вопросе остается много неясностей. По видовому составу и особенно физиологии виды актиномицетов, обитающие в ризосфере и в почве, не отличаются.
На микрофлору ризосферы влияют вид и возраст растений, их состояние, положение и характер распределения корней, тип почвы и окружение. Корни растений стимулируют или угнетают микробов в разной степени. Бобовые растения чаще всего стимулируют развитие микробов. В ризосфере клеверов, например, обнаруживается значительно больше микроорганизмов, чем в зоне корней злаков и деревьев.
Корневые выделения растений в случае длительного выращивания одних и тех же культур растений (монокультур) на одних и тех же площадях приводят к так называемому «почвенному утомлению». Такая обстановка в сочетании с монотонным по составу растительным опадом вызывает селекцию отдельных групп и даже видов микроорганизмов и их чрезмерное развитие в почвах. Следствием этого являются стойкие заболевания растений (при развитии патогенных для растений микробов), уносящие урожай. В пределах поверхности одного корешка микрофлора оказывается разной и обилие микроорганизмов нарастает к кончикам корней, где, например, отмечен наибольший экзосмос аминокислот.
Ризосферный эффект увеличивается после прорастания семени и достигает максимума в период цветения и плодоношения растений. Таким образом, возраст и старение растений играет большую роль в формировании и деятельности ризосферной микрофлоры. Представление об этом дано в таблице 14.
Таблица 14 - Групповой состав и численность микрофлоры ризосферы пшеницы (чило микроорганизмов в тыс. на 1 г почвы). По Е.Н. Мишустину, 1972 г.
Фазы развития растений
|
Бакте рии |
Из числа бактерий |
Актиноми цеты |
Грибы |
Целлюлозные микроорганизмы |
|
неспороносные |
бациллы |
|||||
Кущение Колошение Цветение Созревание
|
300000 420000 560000 280000 |
295000 417000 546000 205000 |
5000 3000 14000 75000 |
20 55 70 45 |
40 55 70 45 |
100 100 1000 10000 |
Степень освещенности и температура воздуха также влияют на корневые выделения и, следовательно, на микроорганизмы. Ризосферный эффект более ярко выражен в песчаных почвах и менее - в гумусных. В пустынных районах ризосфера является, по-видимому, единственной зоной, где активно развивается микрофлора. В любой почве изменения окружающей среды, включая агротехнические мероприятия, оказывают меньшее воздействие на микроорганизмы в ризосфере по сравнению с обитателями почвы. Ризосферная зона представляет собой своеобразную «буферную» систему, препятствующую воздействию среды на микрофлору.