
- •Введение
- •1 Экология микроорганизмов
- •1.1 Среды обитания микроорганизмов
- •1.1.1 Биогенная среда обитания
- •1.1. 2 Абиогенные субстраты
- •1.1.2.1 Почва как среда обитания микробов
- •1.2 Взаимоотношения организмов
- •1.2.1 Антагонизм
- •1.2.1. 1 Хищничество
- •1.2.1.2 Паразитизм
- •1.2.2 Комменсализм
- •1.2.3 Нейтрализм
- •1.2.4 Мутуализм (симбиоз)
- •2 Экология микроорганизмов почвы
- •2.1 Сукцессия
- •3 Свойства почвы, как среды обитания
- •3.1 Гипергенез
- •3.1.1 Минералогический, механический и химический состав почвообразующих пород
- •3.1.1.1 Характеристика первичных и вторичных минералов
- •3.1.1.2 Механический состав почвообразующих пород и почв
- •3.1.1.3 Химический состав отдельных фракций почв
- •3.2 Почвообразовательный процесс
- •3.2.1 Роль микроорганизмов в образовании почвы
- •3.3 Состав и свойства почвы
- •3.4 Основные типы почв и их распространение
- •3.5 Плодородие почвы
- •4 Растения
- •4.1 Вегетативные органы растений
- •4.1.1 Лист
- •4.1.1.1 Морфология, анатомия листа и его происхождение
- •4.1.1.2 Физиология листа
- •4.1.2 Стебель
- •4.1.3 Корень растения
- •4.1.3.1 Корневые волоски
- •4.1.3.2 Микориза
- •5 Минеральное питание растений
- •5.1 Роль азота в питании растений
- •5.1.1 Превращения азота в почве
- •5.1.2 Круговорот азота
- •5.2 Роль фосфора в питании растений
- •5.2.1 Содержание и формы соединений фосфора в почвах
- •5.2.2 Круговорот фосфора
- •5.3 Роль калия в питании растений
- •5.3.1 Состояние калия в почве
- •5.4 Роль микроэлементов в питании растений
- •6 Удобрения в сельскохозяйственном производстве
- •6.1 Азотные удобрения
- •5.4 Фосфорные удобрения
- •6.3 Калийные удобрения
- •7 Взаимодействие микроорганизмов и растений
- •7.1 Азотфиксация микроорганизмами
- •7.1.1 Открытие азотфиксирующих бактерий
- •7.1.2 Клубеньковые бактерии бобовых
- •7.1.2.1 Морфология и физиология клубеньковых бактерий
- •7.1.2.2 Специфичность и активность клубеньковых бактерий
- •7.1.2.3 Инфицирование бобового растения клубеньковыми бактериями
- •7.1.2.4 Этапы развития симбиоза ризобий с бобовыми
- •7.1.2.5 Систематика ризобий
- •7.1.2.6 Морфолого-анатомическая характеристика клубеньков в их онтогенезе
- •7.1.2.7 Организация клубеньков и биохимия азотфиксации
- •7.1.2.8 Диазотрофы
- •7.1.3 Факторы, определяющие симбиотические взаимоотношения клубеньковых бактерий с бобовыми растениями
- •7.1.4 Распространение клубеньковых бактерий в природе
- •7.2 Клубеньки у растений, не относящихся к бобовым
- •7.3 Внекорневые азотфиксирующие симбионты
- •7.4 Везикулярно-арбускулярная микориза
- •7.5 Ризосферная микрофлора
- •7.6 Свободноживущие азотфиксирующие микроорганизмы
- •7.7 Ассоциативные азотфиксаторы
- •8 Механизм биологической фиксации молекулярного азота
- •8.1 Преинфекционные (сигнальные) взаимодействия
- •8.2 Структурная основа симбиоза
- •8.3 Механизм взаимодействия растения и азотфиксатора
- •8.4 Энергетическое обеспечение азотфиксации
- •8.5 Ассимиляция фиксированного углерода
- •9 Иммобилизация фосфора микроорганизмами
- •9.1 Действие фосфатмобилизующих микроорганизмов на минеральные частички
- •10 Применение микроорганизмов в качестве «живых удобрений»
- •10.1 Применение азотфиксаторов на практике
- •10.1.1 Азотфиксирующие препараты
- •10.1.2 Фосфатмобилизирующие препараты
- •10.1.3 Кремнебактерин
- •10.1.4 Комплексные микробиологические удобрения
- •Литература
- •Приложение а (информационное) Глоссарий
- •Приложение в (информационное) Представители азотфиксаторов
- •Приложение г (обязательное) Некоторые методики изучения активности микроорганизмов
- •Методика уменьшения лизогенности штаммов Bacillus sp.
- •Содержание
7.1.2.7 Организация клубеньков и биохимия азотфиксации
Микроорганизмы, усваивающие молекулярный азот, называются диазотрофами. Азотфиксирующий клубенек состоит из следующих частей:
а) инфицированная бактериями ткань;
б) проводящая ткань, поставляющая углеводы и выносящая продукты азотфиксации;
в) меристема, за счет которой идет рост клубенька.
Основным элементом симбиоза является нитрогеназа – многомерный фермент, состоящий из комплекса двух белков: MoFe-белка и Fe-белка. Нитрогеназы из разных азотфиксаторов несколько различаются своими молекулярными массами и содержанием металлов. Каждый из белков, в свою очередь, состоит из нескольких субъединиц. Молекулярная масса MoFe-белка различных нитрогеназ находится в пределах 200-250 кДа. Фермент содержит по два атома молибдена, 28-34 атома железа и 18-24 атома серы на одну молекулу. Молекулярная масса Fe-белка колеблется от 50 до 70 кДа и также содержит атомы железа и серы с молекулярной массой около 300 кДа. Нитрогеназа синтезируется в бактероидах и является катализатором фиксации азота:
Этот процесс требует значительных затрат энергии. По расчетам для клеток Rhizobium на восстановление одной молекулы N2 необходимо до 25-35 молекул АТФ, то есть на каждый грамм фиксированного азота расходуется три-шесть грамм органического углерода. Другими словами, растение в клубеньки поставляет 30-40 % продуктов фотосинтеза. Примерно половина из них возвращается в надземную часть в виде азотистых соединений.
Нитрогеназа обладает низкой субстратной специфичностью, т.е. обладает способностью восстанавливать широкий спектр соединений с тройной связью, например, превращать ацетилен в этилен. Данная реакция применяется для определения нитрогеназной активности ацетиленовым методом. Для активной работы нитрогеназы необходимы микроаэрофильные условия, которые в клубеньке обеспечиваются диффузным барьером (слой плотно прилегающих друг к другу клеток во внутреннем кортексе) и синтезом леггемоглобина (гемоглобинподобный белок, синтезируемый растительными клетками).
Леггемоглобин связывает O2, транспортирует его к симбиосомам, обеспечивая дыхательную активность клубеньков. Он составляет 30 % белка в клубеньках и придает им ярко-розовый цвет. Леггемоглобин напоминает по своей структуре и функции гемоглобин человека и животных, специализирующийся, как известно, на транспорте О2 и СО2. Леггемоглобин находится в клетках клубеньков, где живут азотфиксирующие микроорганизмы. Нитрогеназный комплекс, образующий аммиак из воздуха, действует по физико-химическим законам очень экономно. Если в среде обитания достаточно ионов аммония или нитратов, он прекращает работу. Потребление растениями аммиака, образовавшегося при азотфиксации или восстановлении нитратов почвы, осуществляется ферментами, связанными с биосинтезом так называемых первичных аминокислот, прежде всего глютаминовой, аспарагиновой кислот и их амидов. В конечном итоге азот в виде аминогрупп вовлекается в серию биосинтетических реакций организма, поддерживая его жизненные функции.