- •Введение
- •1 Экология микроорганизмов
- •1.1 Среды обитания микроорганизмов
- •1.1.1 Биогенная среда обитания
- •1.1. 2 Абиогенные субстраты
- •1.1.2.1 Почва как среда обитания микробов
- •1.2 Взаимоотношения организмов
- •1.2.1 Антагонизм
- •1.2.1. 1 Хищничество
- •1.2.1.2 Паразитизм
- •1.2.2 Комменсализм
- •1.2.3 Нейтрализм
- •1.2.4 Мутуализм (симбиоз)
- •2 Экология микроорганизмов почвы
- •2.1 Сукцессия
- •3 Свойства почвы, как среды обитания
- •3.1 Гипергенез
- •3.1.1 Минералогический, механический и химический состав почвообразующих пород
- •3.1.1.1 Характеристика первичных и вторичных минералов
- •3.1.1.2 Механический состав почвообразующих пород и почв
- •3.1.1.3 Химический состав отдельных фракций почв
- •3.2 Почвообразовательный процесс
- •3.2.1 Роль микроорганизмов в образовании почвы
- •3.3 Состав и свойства почвы
- •3.4 Основные типы почв и их распространение
- •3.5 Плодородие почвы
- •4 Растения
- •4.1 Вегетативные органы растений
- •4.1.1 Лист
- •4.1.1.1 Морфология, анатомия листа и его происхождение
- •4.1.1.2 Физиология листа
- •4.1.2 Стебель
- •4.1.3 Корень растения
- •4.1.3.1 Корневые волоски
- •4.1.3.2 Микориза
- •5 Минеральное питание растений
- •5.1 Роль азота в питании растений
- •5.1.1 Превращения азота в почве
- •5.1.2 Круговорот азота
- •5.2 Роль фосфора в питании растений
- •5.2.1 Содержание и формы соединений фосфора в почвах
- •5.2.2 Круговорот фосфора
- •5.3 Роль калия в питании растений
- •5.3.1 Состояние калия в почве
- •5.4 Роль микроэлементов в питании растений
- •6 Удобрения в сельскохозяйственном производстве
- •6.1 Азотные удобрения
- •5.4 Фосфорные удобрения
- •6.3 Калийные удобрения
- •7 Взаимодействие микроорганизмов и растений
- •7.1 Азотфиксация микроорганизмами
- •7.1.1 Открытие азотфиксирующих бактерий
- •7.1.2 Клубеньковые бактерии бобовых
- •7.1.2.1 Морфология и физиология клубеньковых бактерий
- •7.1.2.2 Специфичность и активность клубеньковых бактерий
- •7.1.2.3 Инфицирование бобового растения клубеньковыми бактериями
- •7.1.2.4 Этапы развития симбиоза ризобий с бобовыми
- •7.1.2.5 Систематика ризобий
- •7.1.2.6 Морфолого-анатомическая характеристика клубеньков в их онтогенезе
- •7.1.2.7 Организация клубеньков и биохимия азотфиксации
- •7.1.2.8 Диазотрофы
- •7.1.3 Факторы, определяющие симбиотические взаимоотношения клубеньковых бактерий с бобовыми растениями
- •7.1.4 Распространение клубеньковых бактерий в природе
- •7.2 Клубеньки у растений, не относящихся к бобовым
- •7.3 Внекорневые азотфиксирующие симбионты
- •7.4 Везикулярно-арбускулярная микориза
- •7.5 Ризосферная микрофлора
- •7.6 Свободноживущие азотфиксирующие микроорганизмы
- •7.7 Ассоциативные азотфиксаторы
- •8 Механизм биологической фиксации молекулярного азота
- •8.1 Преинфекционные (сигнальные) взаимодействия
- •8.2 Структурная основа симбиоза
- •8.3 Механизм взаимодействия растения и азотфиксатора
- •8.4 Энергетическое обеспечение азотфиксации
- •8.5 Ассимиляция фиксированного углерода
- •9 Иммобилизация фосфора микроорганизмами
- •9.1 Действие фосфатмобилизующих микроорганизмов на минеральные частички
- •10 Применение микроорганизмов в качестве «живых удобрений»
- •10.1 Применение азотфиксаторов на практике
- •10.1.1 Азотфиксирующие препараты
- •10.1.2 Фосфатмобилизирующие препараты
- •10.1.3 Кремнебактерин
- •10.1.4 Комплексные микробиологические удобрения
- •Литература
- •Приложение а (информационное) Глоссарий
- •Приложение в (информационное) Представители азотфиксаторов
- •Приложение г (обязательное) Некоторые методики изучения активности микроорганизмов
- •Методика уменьшения лизогенности штаммов Bacillus sp.
- •Содержание
5.1.1 Превращения азота в почве
Образующиеся в растениях азотсодержащие органические соединения по трофическим цепям попадают в организм гетеротрофов, а также в почву в виде опада, после отмирания растений и животных. В почве они подвергаются распаду при участии сапрофагов, минерализуются и используются затем другими растениями. Конечным звеном разложения являются организмы - аммонификаторы, образующие аммиак (NН3). Аммиак включается в реакции нитрификации, т. е. образования нитритов и их превращения в нитраты. Таким образом, цикл круговорота азота в почве поддерживается постоянно.
В то же время часть азота возвращается в атмосферу благодаря деятельности бактерий - денитрификаторов, разлагающих нитраты до молекулярного азота (N2). В результате бактериальной денитрификации ежегодно с 1 га почвы улетучивается до 50 — 60 кг азота.
В составе сухого вещества растений содержание азота не очень большое, от 1 до 3%. Однако азот входит в состав белков и нуклеиновых кислот – основных биополимеров клетки, без которых невозможна жизнь. В почве связанный азот представлен четырьмя видами соединений: азотом аммонийных солей (NH4+); азотом нитратов (NО3-); органическим азотом белков и нуклеиновых кислот в виде остатков распада растений и животных, а также продуктов их расщепления – аминокислот, пептидов, аминов и амидов, а также азотом гумуса. Известно, что неорганические формы азота – аммонийный и нитратный азот, намного лучше усваиваются растениями, чем его органические соединения. Исключение составляют вещества, от которых легко отщепляется аммонийный азот – мочевина, аспарагин и глутамин. Именно почвенные микроорганизмы минерализуют органический азот почвы, превращая его в аммиак – то исходное соединение, которое растения присоединяют к углеводам и образуют аминокислоты и белки.
5.1.2 Круговорот азота
Общая направленность биогеохимического круговорота азота на планете – накопление его в молекулярной форме N2 в атмосфере, около 78%. Но живое вещество и почвы противостоят этой тенденции. В биосфере содержится примерно 150 млрд. тонн азота, связанного в органических соединениях почвенного покрова – 1,5 · 1011 тонн, в биомассе растений - 1,1 · 109 тонн и биомассе животных – 6,1 · 107 тонн.
Азот входит в состав многих органических соединений, прежде всего белка. В молекуле белка он образует, прочные амидные связи с углеродом или соединяется с водородом, присутствуя в виде аминных или амидных групп. Образование амидных (пептидных) связей (С — N-связи) является главным механизмом синтеза белковых молекул и пептидов, составляющих сущность всего живого на Земле.
Схема, отражающая круговорот азота, приведена на рисунке 15.

Рисунок 15 - Схема круговорота азота. Выделены основные этапы и приведены оценки количества азота, участвующего в основных потоках. Числа в скобках - тераграммы (Тг = 106 т) в год (по Ю. Одуму, 1986)
Источником азота для автотрофов являются нитраты (соли азотной кислоты НNО3), а также молекулярный азот атмосферы. Азот нитратов через корневую систему растений попадает по проводящим путям в листья, где используется для синтеза растительного белка.
Второй путь, которым азот попадает в организмы - прямая фиксация азота из атмосферы. Это явление совершенно уникально и свойственно прокариотам - безъядерным микроорганизмам. До 1950 г. были известны всего три таксона микроорганизмов, способных связывать атмосферный азот:
- свободноживущие бактерии родов Azotobacter и Clostridium;
- симбиотические клубеньковые бактерии рода Rhizobium
- сине-зеленые водоросли (цианобактерии) родов Anabaena, Nostoc, а также другие члены порядка Nostocales.
Затем были обнаружены и другие виды организмов, способных к фиксации азота из атмосферы; пурпурные бактерии рода Rhodospirilum, а также почвенные бактерии, близкие к Pseudomonas, актиномицеты из корневых клубеньков ольхи (Alnus, Ceanothus, Myrika и другие). Было так же установлено, что сине-зеленые водоросли рода Anabaena (надо подчеркнуть, что эти водоросли обладают способностью к гетеротрофному питанию и имеют другие признаки, позволяющие относить их с одинаковые успехом также к бактериям) могут быть симбионтами грибов, мхов, папоротников и даже семенных растений, и способность к фиксации азота является полезной для обоих участников. Эта способность служит причиной того, что при выращивании риса и бобовых на одном и том же поле в течение нескольких лет можно получать хорошие урожаи, не внося азотных удобрений.
Биохимический механизм прямой фиксации атмосферного азота осуществляется при участии фермента нитрогеназы, катализирующей расщепление молекулы азота (N2). Процесс этот требует значительных затрат энергии на разрыв тройной связи в молекуле азота. Реакция идет с участием молекулы воды, в результате чего образуется аммиак (NН3), например, в клубеньках бобовых, На фиксацию I г азота бактерии расходуют около 10 г глюкозы (около 40 ккал), синтезированной в ходе фотосинтеза, т. е. эффективность составляет всего 10 % , более подробно этот процесс будет рассмотрен дальше.
Приведенный пример иллюстрирует также выгоду симбиоза как стратегии «сотрудничества», способствующей выживанию. Нетрудно прийти к идее перспективности выведения таких сортов сельскохозяйственных культур, которые, используя симбиоз с азотфиксирующими микроорганизмами, давали бы хорошие урожаи без применения удобрений.
Приостановление круговорота азота может происходить вследствие его накопления в глубоководных океанических осадках. При этом азот выключается из кругооборота на несколько миллионов лет. Потери компенсируются поступлением газообразного азота при вулканических извержениях. Ю. Одум полагает, что извержения вулканов в этом смысле полезны, и, если «блокировать все вулканы на Земле, то при этом от голода вполне может погибнуть больше людей, чем страдает сейчас от извержений».
Круговорот азота является примером хорошо забуференного круговорота газообразных веществ. Он является важным фактором, лимитирующим или контролирующим численность организмов. Круговорот азота достаточно подробно изучен. Известно, в частности, что из 109 т азота, которые ежегодно усваиваются в биосфере, около 80 % возвращается в круговорот с суши и из воды, и лишь 20 % необходимого количества - это «новый» азот, поступающий из атмосферы с дождем и в результате азотфиксации. Напротив, из азота, поступившего на поля с удобрениями, очень небольшая часть используется повторно; большая же часть теряется с собираемым урожаем в результате выноса водой и денитрификации.
В естественных биогеоценозах, благодаря уравновешивающимся составляющим фитоценоза, складывается нулевой баланс азота. Он обеспечивается такими процессами, как разложение растительных остатков и гумуса, синтезом de novo органических веществ, аммонификацией, денитрификацией, азотфиксацией.
В агроценозах, когда в экосистеме резко нарушается биологическое равновесие, ситуация совершенно другая: после распахивания целинных земель азотфиксация падает, и складывается отрицательный баланс азота. Земледелие Сибири, где зачастую в старых агроценозах возделывается монокультура пшеницы без внесения удобрений, показывает положительный баланс по азоту. Тот факт, что на этих полях урожай в благоприятные годы достигает 20 ц/га, доказывает, что здесь происходит активная азотфиксация, частично компенсирующая потери азота за счет урожая и денитрификации.
