
- •2.Классификация тоннелей. Основные понятия и определения.
- •3.Номенклатура объектов тоннельного пересечения.
- •4.Тоннельные пересечения для преодоления высотных и контурных (водных) препятствий.
- •5.Задачи инженерных изысканий. Виды и способы работ.
- •13. Вентиляция тоннельных пересечений на железнодорожных магистралях.
- •16. Понятия о горном давлении. Формы потери устойчивости незакрепленной выработки. Характер взаимодействия обделки с грунтовым массивом.
- •17. Особенности проектирования верхнего строения пути в ж.Д. Тоннелях.
- •18. Конструкции обделок тоннелей, сооружаемых закрытым способом.
- •19. Гидроизоляция тоннельных обделок, сооружаемых закрытым способом.
- •20.Принципы расчета обделок транспортных тоннелей, сооружаемых закрытым способом.
- •21.Выбор и обоснование расчетных схем. Определение нагрузок.
- •22.Горный способ сооруж. Тоннелей.Схемы раскрытия забоя на полное сечение.
- •23.Основные операции проходческого цикла при горном способе сооружения тоннельных пересечений.
- •24.Временная крепь.Виды временной крепи.
- •25. Разработка грунта. Погрузка и транспорт грунта.
- •27. Щитовой способ походки тоннелей. Комплексная механизация работ.
- •29. Классификация обделок. Материалы обделок тоннелей.
- •30. Определение сроков строительства тоннеля.
- •32. Гипотеза м.М.Протодьяконова. Коэф. Крепости грунтов.
- •34. Основные гипотезы горного давления.
- •35. Расчет обделок по схеме стержневой конструкции в упругой среде (метод Метрогипротранса). Алгоритм расчета.
- •36. Внутренние обустройства железнодорожных тоннелей.
- •12. Двухпутные и однопутные жд тоннели. Габариты и внутреннее очертание обделок жд тоннелей.
34. Основные гипотезы горного давления.
Известные гипотезы –вывалообразование, сводообразование, полный вес столба грунта.
Первые методы расчёта Г. д. основывались на гипотезе, согласно которой Г. д. вызвано весом определённого объёма пород, приуроченного к данному несущему элементу. Одной из наиболее распространённых была гипотеза Турнера (Франция, 1884), на основе к-рой Г. д. в целиках при камерно-столбовой системе разработки определяется весом столба пород (от уровня залежи до поверхности), ограниченного в плане осями симметрии прилегающих к целику камер или просеков. На этой гипотезе основан метод расчёта Л. Д. Шевякова. Аналогичные гипотезы о Г. д. на крепь подготовит. выработок исходили из предположения о действии на крепь веса столба пород от выработки до поверхности с основанием, равным пролёту выработки. Однако оно приводило даже для небольших глубин к нагрузкам, к-рые не могла бы выдержать крепь. Поэтому были выдвинуты гипотезы о действии на крепь веса пород в пределах треугольного или сводчатого объёма с основанием, по-прежнему равным пролёту выработки. Наибольшую известность получила гипотеза рус. учёного M. M. Протодьяконова (1907), в к-рой указанный объём представляет собой параболич. свод. Его высота (b) связана с полупролётом выработки (а) соотношением: b=a/f, где f - тангенс угла внутр. трения для сыпучих пород или коэфф. крепости для связных. Расчёты по этой формуле для глубин до 200-300 м (при отсутствии тектонич. напряжений) дают практически приемлемые результаты. Применительно к лавам угольных пластов гипотеза о весе пород свода трансформировалась в гипотезу о сводчатой форме распределения Г. д. на крепь, параметры к-рого определяются по результатам натурных замеров и по качеств. оценкам. Наряду с упомянутыми гипотезами развивалось направление, сводившее изучение Г. д. к задаче изучения напряжённо-деформированного состояния массива, не потерявшего сплошности. Здесь широкое применение нашли методы механики деформируемых сред, в частности теории упругости, пластичности, ползучести и др. Упругое напряжённо-деформированное состояние в окрестности горизонтальной круглой подготовит. выработки теоретически изучено А. Леоном (Германия, 1908); им же совместно с Ф. Вильхаймом (Германия, 1910) поставлены опыты по разрушению стенок такой выработки на моделях из мрамора. Для вертикального ствола упругая задача решена сов. учёным А. Н. Динником в 1926, попутно им дан вывод одной из наиболее распространённых формул для определения коэфф. бокового распора. Более детальное решение для незакреплённого ствола получено сов. учёным С. Г. Лехницким (1937). Упругопластич. напряжённо-деформированное состояние в окрестности горизонтальной и вертикальной круглой выработки рассмотрел Р. Феннер (Чили, 1938). В его решении Г. д. на крепь определяется миним. значением, при к-ром окружающая выработку пластин. зона будет находиться в равновесии. Принципиальной для развития теории Г. д. явилась работа сов. учёного Г. Н. Савина (1947), в к-рой использовано условие совместности перемещений контактирующих друг с другом точек поверхности выработки и крепи. Это позволило теоретически объяснить влияние податливости крепи на величину Г. д. А. Лабас (Бельгия, 1949) предложил рассматривать поведение пород в разрушенных областях вокруг выработок как поведение сыпучей среды, характеризующейся внутр. трением и сцеплением. В 1954 сов. учёный Г. Н. Кузнецов впервые сформулировал фундаментальные понятия о двух крайних режимах работы крепи: заданной нагрузки и заданной деформации; дальнейшее развитие эти понятия получили в работах сов. учёного Г. А. Крупенникова и его школы. Г. Н. Кузнецовым сформулирована также концепция шарнирно-блочных систем, образующихся в кровле очистных выработок. Сов. учёный К. В. Руппенейт на основе предложений Г. Н. Савина и А. Лабаса построил универсальную расчётную схему, позволяющую связать Г. д. на крепь подготовит. выработки с упругими и прочностными свойствами пород. Ю. М. Либерман, модифицировав схему К. В. Руппенейта, разработал метод, позволяющий определить оптим. жёсткость крепи. В кон. 70-х гг. вновь возродился интерес к определению Г. д. на крепь как веса нек-рого объёма сыпучей породы; достижения в этой области связаны с работами сов. учёного Е. И. Шемякина и др.
Систематич. изучение тектонич. сил в массиве Г. п. начато в СССР работами М. В. Гзовского в 1954 и продолжено И. А. Турчаниновым, Г. А. Марковым, за рубежом - Н. Хастом (Швеция, 1958) и др. исследователями. Осн. методы исследования Г. д. - аналитический, моделирование (оптическое и эквивалентными материалами) и натурные наблюдения.