
- •1.Определение понятие системы «железнодорожный путь». Основные подсистемы железнодорожного пути( в том числе на мостах и в тоннелях)
- •2.Силы, действующие на путь
- •3.Типы верхнего строения пути
- •4.Критерии оценки прочности пути
- •5.Назначение рельсов и требования, предъявляемые к ним. Типы, профили, длины рельсов.
- •6.Анализ элементов поперечного профиля рельсов
- •7.Характеристика рельсов. Материал рельсов
- •Вес рельса
- •8.Маркировка, срок службы рельсов и мероприятия по их продлению
- •9.Рельсовые цепи автоблокировки
- •10.Промежуточные рельсовые скрепления. Требование, Классификация
- •12.Конструкции промежуточных рельсовых скреплений для железобетонных шпал
- •13.Противоугоны. Схемы их расстановки
- •15.Классификация стыков. Конструкции стыков. Элементы стыковых скреплений
- •16. Изолирующие, токопроводящие и переходные стыки
- •17.Сроки службы стыковых скреплений
- •18.Назначение шпал и требования, предъявляемые к ним. Сила взаимодействия рельса со шпалой
- •19.Деревянные шпалы, достоинства и недостатки. Борьба с износом шпал
- •20.Железобетонные шпалы. Достоинства и недостатки. Конструкция железобетонных шпал
- •21.Срок службы шпал
- •22.Назначение балластного слоя. Требования, предъявляемые к нем
- •23.Показатели прочности путевого щебня. Фракционный ( зерновой) состав путевого щебня
- •26.Конструкция пути с монолитным подрельсовым основанием
- •27. Конструкция пути с плитным подрельсовым основанием
- •28.Бесстыковой путь . Конструкция, физическая сущность работы
- •29.Угон пути и борьба с ним. Причины угона пути
- •30.Земляное полотно: назначение и предъявляемые требования. Типы конструкций
- •31. Основная площадка земляного полотна
- •32.Типовой поперечный профиль насыпи
- •33. Типовой поперечный профиль выемки
- •34. Дефекты и деформации земляного полотна
- •35. Деформация основной площадки земляного полотна
- •36.Защита земляного полотна от неблагоприятных природных условий
- •38.Взаимосвязь ширины рельсовой колеи и ширины колесной пары
- •39.Определение предельно допустимой ширины рельсовой колеи
- •40.Особенности устройства рельсовой колеи на кривых участках
- •41.Определение оптимальной ширины колеи
- •42.Определение минимально допустимой ширины колеи
- •43. Определение возвышения наружного рельса
- •44. Определение возвышения наружного рельса из условия обеспечения равномерного износа обеих рельсовых нитей
- •Определение расчетного возвышения наружного рельса в кривых для пропуска пассажирских и грузовых поездов из условия комфортабельности езды
- •45.Переходные кривые
- •47.Проектирование переходных кривых
- •48.Укороченные рельсы
- •49. Расчет числа и порядок размещения укороченных рельсов на внутренних нитях
12.Конструкции промежуточных рельсовых скреплений для железобетонных шпал
Скрепления для железобетонных шпал. В Железобетон обладает повышенной прочностью на сжатие, что позволяет широко применять бесподкладочные промежуточные скрепления, осуществлять подуклонку рельса за счет наклона подрельсовой площадки, передавать на бетон значительные боковые усилия. В то же время высокая жесткость и электропроводность железобетона вызывают необходимость применения в узлах скрепления электро и виброизолирующих деталей.
Типовым промежуточным скреплением для железобетонных шпал является раздельное клеммно-болтовое скрепление КБ (рис. 3.45), в котором рельс к подкладке прижимается жесткими клеммами, надеваемыми на клеммные болты; фигурные головки болтов заводятся в пазы подкладочных реборд. Под гайки клеммных болтов ставятся упругие шайбы. Металлические подкладки укладывают на наклонную (для обеспечения подуклонки рельсов) подрельсовую площадку, заглубленную в тело шпалы на 15-25 мм. Для электро и виброизоляции на бетон под подкладку кладут резиновую прокладку толщиной 6-8 мм. Подкладка крепится к шпале закладными болтами; при этом головки болтов опираются на замоноличенную в бетон металлическую шайбу, которая при затяжке монтажных гаек равномерно распределяет нагрузку на бетон. Электроизоляция подкладок от шпал осуществляется нашпальной прокладкой и втулкой из текстолита, надеваемой на стержень закладного болта.
Недостатки конструкции типа КБ являются многодетальность (21 деталь в каждом узле скреплений), материалоемкость (общая масса металлических и полимерных деталей на 1 км пути составляет соответственно 41,6 и 2,1 т) и наличие около 16 тыс. болтов на 1 км пути, содержание которых (очистка от грязи, смазка, подтягивание гаек) требует больших затрат.
Нераздельное клеммно-болтовое скрепление БП (рис. 1.25, а) имеет два закладных болта, которыми при помощи упругих клемм рельс прижимается к подкладке, а подкладка — к шпале.
Для электроизоляции закладных болтов от металлических частей скрепления на них надевают изолирующие втулки; на подкладке и под подкладкой размещаются упругие резиновые прокладки. Конструкция скрепления БП воплотила в себя те полезные технические решения, целесообразность которых вытекала из опыта эксплуатации скреплений КБ. В частности, опорная площадка, на которую укладывается металлическая подкладка, заглублена в бетон также на 25 мм, что позволяет использовать нашпальные прокладки
Рис.
1.25. Подкладочное скрепление БП (а) и
бесподкладочное ЖБР (б) для железобетонных
шпал:
/ — прокладка под подкладку; 2 —
подкладка; 3 —
подрельсовая прокладка; 4 —
закладной болт; 5 —
гайка; б —
упругая клемма; 7 — подклеммный вкладыш;
8 — двухслойная клемма
из резины толщиной 12 мм при сохранении существующей системы передачи поперечных горизонтальных сил на бетон.
Бесподкладочное пружинное скрепление ЖБР (рис. 1.25, б) обеспечивает фиксацию положения рельса на шпале при помощи двухслойных клемм. Пергиб нижней части клеммы служит ребордой, в которую упирается подошва рельса. Боковые усилия от клеммы передаются на подклеммный вкладыш и через него на шпалу. Резиновая подрельсовая прокладка имеет свисающие со шпалы закраины, удерживающие прокладку от выползания из-под рельса. При регулировке положения рельсов по высоте до 15 мм меняют прокладки и подклеммные вкладыши на более толстые.
На основании результатов исследований ожидается улучшение работы скреплений ЖБР по сравнению с ранее испытывавшимся скреплением ЖБ в части восприятия поперечных горизонтальных сил и сохранения стабильности положения рельсовой колеи, ослабления затяжки гаек закладных болтов и продольной устойчивости бесстыковых плетей; снижения затрат на текущее содержание пути.
В
МИИТе разработано (Л. П. Алексеева)
анкерное рельсовое скрепление (сокращенно
АРС), предназначенное для магистральных
линий без ограничений по грузонапряженности
и скоростям движения поездов. АРС
характеризуется высокой надежностью
и стабильностью рельсовой колеи, мало-
детальностью (отсутствием резьбовых
соединений), простотой сборки и
эксплуатации и, как следствие этого,
высокой экономической эффективностью.
Предназначенный к серийному внедрению
узел скрепления АРС-4 обеспечивает
снижение материалоемкости по сравнению
с КБ65 на 30 %, что позволяет сэкономить
на каждом километре пути не менее 15 т
металла. Несъемность анкера, являющегося
составной частью шпалы, в 3, 4 раза
уменьшает вес съемных деталей узла,
обеспечивает возможность проведения
не менее одного капитального ремонта
пути без снятия рельсошпальной решетки,
превращая его в средний ремонт со
сплошной сменой рельсов и (при
необходимости) амортизирующих элементов.