
- •«Санкт-Петербургский государственный электротехнический университет «лэти» им.В.И.Ульянова (Ленина)» (сПбГэту)
- •Архитектура компьютера
- •Оглавление
- •Основные понятия архитектуры и организации компьютеров.
- •1.1. Состав компьютера
- •1.2. Виды (классы) компьютеров
- •1.3. Принцип программного управления и машина фон Неймана
- •1.4. Понятия архитектуры, организации и реализации компьютера
- •1.5. Многоуровневая организация компьютера
- •1.6. Понятие семантического разрыва между уровнями
- •1.7. Организация аппаратных средств вм
- •Представление и обработка данных в вм
- •Целые числа
- •Представление и обработка вещественных чисел.
- •Логические операции над битовыми наборами
- •Представление и обработка символов.
- •Представление видеоинформации и аудиоинформации.
- •Видеоинформация.
- •Аудиоинформация
- •Организация процессора и основной памяти вм
- •3.1. Типовая структура процессора и основной памяти
- •3.2. Основной цикл работы процессора
- •3.3. Организация процессора и памяти в архитекуре Intel x86.
- •3.3.1. Программно доступные регистры процессора
- •3.3.2. Организация стека в архитектуре Intel х86
- •3.3.3. Организация выполняемых программ в ms dos
- •3.3.4. Режимы адресации памяти в архитектуре Intel х86
- •1. Регистровая адресация
- •2. Непосредственная адресация
- •3. Прямая адресация
- •4. Косвенная адресация
- •7. Индексная адресация с масштабированием
- •8. Адресация по базе с индексированием и масштабированием
- •3.3.5. Краткая характеристика системы команд процессоров Intel х86
- •3.3.6 .Арифметическая обработка чисел с использованием математического сопроцессора
- •Организация прерываний в процессорах Intel x86
- •Эволюция микроархитектуры Intel x86
- •Управление выполнением команд в компьютерах.
- •Аппаратный способ формирования управляющих сигналов
- •Микропрограммный способ формирования управляющих сигналов
- •Компьютеры с сокращенным набором команд
- •Организация памяти в компьютере
- •6.1. Назначение и основные характеристики памяти
- •6.2. Основные среды хранения информации
- •6.3. Методы доступа к данным.
- •6.4. Память с произвольным доступом (ппд)
- •6.5. Блочная организация основной памяти.
- •6.6. Постоянные запоминающие устройства (пзу - rom)
- •6.7. Ассоциативные запоминающие устройства (азу)
- •6.8. Иерархическая система памяти
- •Организация кэш-памяти.
- •Прямое отображение блоков оп на кэш-память
- •Наборно-ассоциативное отображение блоков оп на Кэш-память
- •6.10. Организация виртуальной памяти
- •Организация виртуальной памяти в Intel 80386 и более старших моделях.
- •Защита памяти в процессоре Intel 80386
- •Организация работы с внешней памятью
- •7.1. Типы, виды, свойства дисковых накопителей информации.
- •7.2. Магнитные дисковые накопители.
- •7.3. Основные физические и логические параметры жмд
- •7.4. Контроллеры жестких дисков
- •Логическое хранение и кодирование информации
- •Интерфейсы жестких дисков
- •Работа накопителя
- •Внешняя память на cd и dvd дисках.
- •Принципы организации raid массивов
- •Основные принципы построения raid массивов
- •Одиночные уровни raid
- •Составные уровни raid массивов
- •Сравнительные результаты
- •Системные и локальные шины
- •9.1. Общие положения и требования к шинам
- •9.2. Основные виды, характеристики и параметры шин
- •9.3. Стандарты шин
- •Организация системы ввода-вывода в вм
- •10.1. Назначение и основные требования к системе ввода-вывода вм
- •10.2. Архитектура систем ввода-вывода
- •10.3. Способы выполнения операции передачи данных
- •Синхронная передача данных
- •Ввод-вывод по программному прерыванию
- •Ввод-вывод по аппаратному прерыванию (прямой доступ к памяти)
- •10.4. Структуры контроллеров ву для различных режимов передачи данных
- •Программные средства управления вводом-выводом (пс увв)
- •Состав пс увв
- •11.2. Основные компоненты процедуры управления ввода-вывода общего вида
- •11.3 Состав и реализация устанавливаемого драйвера символьного типа
- •Список литературы
- •Приложения
- •Регистры ммх
- •Типы данных
- •Команды ммх
- •П2. Краткое введение в программирование на языке Ассемблера
- •1. Директивы задания данных
- •2. Директивы сегментации программы
- •3. Директивы группирования.
- •4. Порядок размещения сегментов.
3.3.4. Режимы адресации памяти в архитектуре Intel х86
Большинство команд процессора Intel Х86 выполняются с аргументами, которые принято называть операндами. Операнды в программе могут задаваться следующим образом:
-
в регистрах общего назначения;
-
непосредственно в коде команды;
-
в ячейках памяти, задаваемых в команде прямо или косвенно;
-
в портах ввода-вывода.
Для указания места расположения операнда используются 8 режимов адресации, использование которых иллюстрируется в таблице 3.2.
1. Регистровая адресация
Операнды могут располагаться в любых регистрах общего назначения и сегментных регистрах. В этом случае в операторе программы (на языке ассемблера) указывается название соответствующего регистра.
2. Непосредственная адресация
Некоторые команды (пересылки, все арифметические команды, кроме деления) позволяют указывать один из операндов непосредственно в операторе программы.
3. Прямая адресация
Если известен адрес операнда, располагающегося в памяти, можно использовать этот адрес. В реальных программах обычно для задания статических переменных используют директивы определения данных, которые позволяют ссылаться на статические переменные не по адресу, а по имени.
Если селектор сегмента данных находится в DS, имя сегментного регистра при прямой адресации можно не указывать, так как DS используется по умолчанию. Прямая адресация иногда называется адресацией по смещению.
4. Косвенная адресация
Адрес операнда в памяти можно не указывать непосредственно, а хранить в любом регистре. До процессоров i80386 для этого можно было использовать только регистры ВХ, SI, DI и ВР, но потом эти ограничения были сняты и адрес операнда разрешили считывать также и из ЕАХ, ЕВХ, ЕСХ, EDX, ESI, EDI, ЕВР и ESP (но не из AX, CX, DX или SP напрямую – надо использовать ЕАХ, ЕСХ, EDX, ESP соответственно или предварительно скопировать смещение в ВХ, S1, DI или ВР). Как и в случае прямой адресации, DS используется по умолчанию, но не во всех случаях: если смещение берут из регистров ESP, ЕВР или ВР, то в качестве сегментного регистра используется SS. В реальном режиме можно свободно пользоваться всеми 32-битными регистрами, надо только следить, чтобы их содержимое не превышало границ 16-битного слова.
5-6. Базовая или индексная адресация.
Такая форма адресации используется в тех случаях, когда в регистре находится адрес начала структуры данных, а доступ надо осуществить к какому-нибудь элементу этой структуры. Другое важное применение адресации по базе со сдвигом – доступ из подпрограммы к параметрам, переданным в кадре стека, используя регистр ВР (ЕВР) в качестве базы и номер параметра в качестве смещения.
До процессора i80386 в качестве базового регистра можно было использовать только регистры ВХ, ВР, SI или DI и сдвиг мог быть только байтом или словом (со знаком). Начиная с процессоров i80386 и старше, можно дополнительно использовать ЕАХ, ЕВХ, ЕСХ, EDX, ЕВР, ESP, ESI и EDI, так же как и для обычной косвенной адресации. С помощью этого метода можно организовывать доступ к одномерным массивам байт: смещение соответствует адресу начала массива, а число в регистре – индексу элемента массива, который надо использовать. Очевидно, что если массив состоит не из байт, а из слов, придется умножать базовый регистр на два, а если из двойных слов – на четыре. Для этого предусмотрен следующий специальный метод адресации.