- •Часть 2 - Электроника
- •Оглавление
- •Глава 1. Электрофизические свойства полупроводников. Р-n-переход.
- •Физические основы полупроводниковых приборов
- •1.1. Электропроводимость полупроводников
- •1.1.2. Собственные полупроводники
- •1.1.3. Примесные полупроводники
- •1.1.4. Токи в полупроводнике. Дрейф и диффузия
- •1.2. Электрические переходы
- •1.2.1. Классификация электрических переходов
- •1.2.3. Образование p-n перехода. P-n переход в равновесном состояние
- •1.2.5. Вах р-n перехода
- •1.2.6. Ёмкости p-n перехода
- •1.2.7. Пробой p-n перехода
- •Глава 2 Полупроводниковые диоды
- •2.1. Вольт-амперная характеристика диода
- •2.2 Эквивалентная схема диода
- •2.3 Влияние температуры на вах диода
- •2.4 Выпрямительные диоды
- •2.5 Импульсные диоды
- •2.6 Диоды Шотки.
- •2.7 Стабилитроны и стабисторы
- •2.8 Варикапы
- •2.9. Туннельные и обращенные диоды
- •2.10 Маркировка полупроводниковых диодов
- •Глава 3
- •3.1. Биполярные транзисторы
- •3.1 Общие сведения о биполярных транзисторах
- •3 .2 Принцип работы биполярного транзистора в активном режиме
- •4.4 Режимы работы биполярного транзистора
- •4.5 Схемы включения биполярного транзистора
- •4.7 Вольтамперные характеристики (вах) биполярного транзистора
- •Глава 4 Полевые транзисторы
- •4.1. Основные сведения и классификация
- •4.2. Устройство и принцип действия и вах полевого транзистора с электронно-дырочным переходом
- •Принцип работы полевого транзистора с управляющим p-n-переходом
- •Статические характеристики полевого транзистора с р-п переходом
- •4.3. Полевые транзисторы с изолированным затвором
- •1.3. Вах полевого транзистора (математическая модель).
- •1.5. Формальная схема замещения полевого транзистора и ее дифференциальные параметры
- •1.6. Физическая эквивалентная схема полевого транзистора
- •1.7. Зависимость параметров полевого транзистора от режима работы и температуры
- •Глава 5 Тиристоры
- •Структура тиристора, вах и принцип работы
- •Глава 6 Оптоэлектронные приборы.
- •6.1.Фотоприемные устройства Фотоприемные устройства предназначены для преобразования светового излучения в электрические сигналы. В основу работы фотоприемников положны следующие физические явления:
- •6.1.1. Фоторезистор
- •6.1.2. Фотодиоды
- •7.1.3. Фототиристоры
- •7.2 Светоизлучающие приборы
- •7.2.1. Светоизлучающие диоды
- •7.3. Оптроны
- •7.4 Световоды
- •16.1. Виды знакосинтезирующих индикаторов
- •16.2. Вакуумные люминесцентные индикаторы
- •16.3. Жидкокристаллические индикаторы
- •16. 4. Полупроводниковые знакосинтезнрующие индикаторы
- •Глава 7 электровакуумные приборы
- •7.1. Общие сведения
- •8 .2. Вакуумный диод
- •8.3. Триод
- •7.4. Тетроды и пентоды
- •Глава 8.
- •Классификация и основные характеристики имс
- •Маркировка имс
- •Усилители электрических сигналов
- •Основные параметры и характеристики усилителя
- •Амплитудная характеристика усилителя
- •Классификация усилителей
- •2. Схема с оэ.
- •3. Схема с ок
- •Методы задания рабочего режима (рабочей точки) активного элемента и его стабилизация.
- •Обратная связь в усилителях
- •Структурная схема усилителя с обратной связью
- •Влияние отрицательной обратной связи на параметры
- •Типы обратной связи
- •Устойчивость усилителей с обратной связью
- •Импульсные и широкополосные усилители
- •Коррекция в области вч за счет введения частотно-зависимых элементов в коллекторную цепь
- •Избирательные усилители
- •Избирательные усилители с частотно-зависимой нагрузкой
- •Избирательный усилитель с частотно-зависимой обратной связью
- •Усилители мощности
- •В ыходная мощность:
- •Классификация усилителей мощности
- •Режим класса а.
- •Усилители мощности с трансформаторной связью
- •С хема двухтактного усилителя мощности.
- •Бестранзисторные усилители мощности
- •Основные параметры дифференциального каскада
- •Упт с преобразованием частоты входного сигнала
- •Глава 9 Операционные усилители
- •9.1. Условное обозначение и схема включения оу по постоянному току
- •9.2. Структурная схема оу
- •9.3. Основные параметры и характеристики оу
- •Скорость нарастания выходного сигнала ,
- •9.4. Классификация оу по назначению
- •9.5. Понятие об идеальном оу. Операционном усилителе
- •9.6. Анализ устройств содержащих оу
- •9.6.2. Неинвертирующий усилитель.
- •9 .6.3. Преобразователь ток-напряжение
- •9.6.4.. Инвертирующий сумматор
- •.6.5. Усилитель разности напряжения
- •9.6.8. Усилитель сигнала резистивного датчика
- •Глава 10 Компараторы напряжения
- •Н едостатком оу при использовании их в качестве компараторов является невысокое быстродействие переключения (из-за сложности схемы и большого числа активных элементов).
- •Разновидности схем компараторов
- •Двухвходовый инвертирующий компаратор
- •Двухвходовый неинвертирующий компаратор.
- •Одновходовый инвертирующий компаратор.
- •Одновходовый неинвертирующий компаратор.
- •Компараторы с положительной обратной связью
- •Инвертирующий компаратор с положительной обратной связью
- •Быстродействие компараторов
- •«Дребезг» компараторов
- •Формирователь импульсов на основе компараторов
- •Формирователи задержанного прямоугольного импульса
- •Глава 11 Генераторы электрических сигналов
- •11.1. Общие сведения
- •В зависимости от элементов, определяющих частоту автогенератора, генераторы бывают:
- •1 1.4. Генератор с мостом Вина в цепи с положительной обратной связи
- •11.5. Мультивибратор на операционном усилителе
- •Глава 12
- •12.1. Общие сведения
- •12.2. Выпрямители
- •12.3. Сглаживающие фильтры
- •12.4. Стабилизаторы постоянного напряжения
- •12.4.1. Параметрические стабилизаторы
- •12.4.2. Компенсационные стабилизаторы постоянного напряжения
- •12.5. Импульсные стабилизаторы напряжения
- •12.6. Импульсные источники питания
- •Глава 13 Аналогово-цифровые преобразователи и цифроаналоговые преобразователи
- •13.1. Аналогово-цифровые преобразователи
- •13.1.2. Аналого-цифровые преобразователи параллельного типа.
- •13.1.3. Ацп последовательного счёта
- •13.1.4. Ацп последовательного приближения.
- •13.2. Цифро-аналоговые преобразователи.
- •13.2.1. Основные параметры и характеристики цап
- •Наибольшее распространение получили цап параллельного типа с суммированием токов, т.К. Они обладают наилучшим быстродействием преобразования.
- •13.2.2. Цифро-аналоговые преобразователи с суммированием взвешенных токов
- •13.2.3. Цифро-аналоговые преобразователи с резистивной матрицей r-2r
1.1.2. Собственные полупроводники
Атомы
собственного полупроводника располагаются
в пространстве в строго определённом
порядке, образуя кристаллическую
решётку. Она возникает за счёт
обобществления валентных электронов
соседними атомами (такая связь называется
ковалентной). Плоская модель кристаллической
решётки собственного четырехвалентного
полупроводника приведена на р
ис.2.1.
В собственных полупроводниках при Т=00K свободных носителей заряда нет. Все электроны участвуют в образовании ковалентной связи, и полупроводник является диэлектриком. С повышением температуры электроны приобретают дополнительную энергию, и некоторые из них покидают ковалентные связи, становясь свободными. Незаполненная ковалентная связь заполняется одним из валентных электронов соседнего атома. На месте этого электрона образуется новая незаполненная связь, и далее процесс повторяется. Свободная ковалентная связь называется вакансией, её можно рассматривать, как свободный положительный носитель заряда, который называют дыркой. Процесс образования свободного электрона и дырки называется генерацией свободной электронно-дырочной пары. Свободные электроны, двигаясь по объёму полупроводника, теряют часть своей энергии и могут занимать место дырки. Этот процесс взаимного исчезновения электрона и дырки называется рекомбинацией. В результате рекомбинации электрон и дырка перестают существовать. В чистом беспримесном полупроводнике (их называют полупроводниками i – типа) всегда выполняется условие
,
,
где: ni и pi
– соответственно концентрация электронов
и дырок в полупроводнике; А - постоянный
коэффициент; Т - температура по шкале
Кельвина;
-
ширина запрещённой зоны (это энергия,
которую должен приобрести электрон,
чтобы разорвать ковалентную связь и
стать свододным, она зависит от материала
полупроводника). Она составляет 0,803 эВ
для Ge, для Si
- 1,12эВ, а для GaAs - 1,43эВ; k
– постоянная Больцмана.
Чистые полупроводники при создании полупроводниковых приборов практически не используются, так как их свойства зависят только от температуры и других внешних факторов.
1.1.3. Примесные полупроводники
При создании полупроводниковых приборов обычно используют примесные полупроводники, поскольку их электропроводность в основном определяется концентрацией введенной примеси и лишь незначительно зависит от дестабилизирующих факторов. В зависимости от характера введенной примеси, примесные полупроводники бывают двух типов: p и n- типа.
Полупроводники n-типа. Их получают путём введения в собственный, обычно 4-х валентный полупроводник атомов 5-и валентной примеси. Каждый атом, такой примеси создает свободный электрон. Примесь, создающая свободные электроны, называется донорной.
Плоская модель кристалической решетки полупроводника с донорной примесью приведена на рис. . Атом примеси, занимая узел кристаллической решетки, оказывается в окружении атомов собственного полупроводника. Четыре электрона атома примеси идут на образование ковалентной связи с соседними атомами собственного полупроводника, а пятый благодаря малой энергии ионизации уже при невысокой температуре оказывается свободным.
И
так,
в результате такого ухода электрона, в
полупроводнике n-типа
возникает два вида основных зарядов:
электрон – свободный (подвижный)
отрицательно заряженный электрон и
неподвижный положительно заряженный
ион донорной примеси. В целом, такой
полупроводник остается электрически
нейтральным.
В таком полупроводнике основными свободными носителями заряда являются электроны, их концентрация становится равной
nn=ND+niND ni
Здесь ND - концентрация атомов донорной примеси, nn - концентрация электронов в полупроводнике n-типа, ni -концентрация электронов в собственном полупроводнике. Отсюда следует, что концентрация электронов в основном определяется концентрация атомов донорной примеси. Полупроводники в которых основными носителями являются электроны называют электронными или полупроводниками n- типа.
Концентрация дырок в полупроводнике n- типа определяется дырками, которые возникают в результате термогенерации в собственном полупроводнике, т.е. рn=pi.. Концентрация дырок в полупроводнике n- типа много меньше концентрации электронов. Поэтому дырки называют неосновными носителями.
Для электронного полупроводника (n- типа) справедливо соотношение nnpn=nipi=ni2.
П
олупроводники
p-типа. В них
в качестве примеси используются 3-х
валентные вещества. В результате введения
такой примеси каждый атом примеси
отбирает (присваивает) электрон
близлежащего атома собственного
полупроводника, в результате чего в
полупроводнике образуется дырка. такая
примесь называется акцепторной.
Плоская модель кристаллической решётки полупроводника с акцепторной примесью приведена на рис. . Связь атома примеси с четвертым атомом собственного полупроводника оказывается незаполненной. Однако на нее сравнительно легко могут переходить электроны соседних атомов собственного полупроводника. В результате такого перехода образуется два заряда: дырка – свободный (подвижный) положительно заряженный заряд - дырка, на месте откуда ушел электрон и неподвижный отрицательно заряженный ион акцепторной примеси.
дырки являются основными свободными носителями заряда, их концентрация в основном равна концентрации ионов акцепторной примеси
pp=NA+piNA pi ,
где: pp- концентрация дырок в полупроводнике р-типа NA- концентрация атом акцепторной примеси, pi-концентрация дырок в собственном полупроводнике.
Электроны являются неосновными носителями заряда, их концентрация np определяется электронами ni образующимися в результате термогенерации собственного полупроводника, т.е. np=ni.
Для дырочного полупроводника (р- типа) справедливо соотношение nрpр=nipi=ni2.
