- •1. Предмет, содержание и задачи почвоведения
- •2. Роль русских ученых в создании науки о почве.
- •3. Свойства земли, учитываемые при землеустройстве.
- •4. Понятие о почвенном плодородии
- •5. «Выветривание»
- •6. Литосфера
- •7. Понятие о горной породе
- •Роль оледенений четвертичного периода в формировании рельефа
- •13. Производственная деятельность человека как почвообразующий фактор
- •18. Формирование почвенного профиля и морфологические признаки почв
- •19. Основные генетические горизонты почвенного профиля этого типа.
- •23. Состав органического вещества почвы
- •27. Глава 10. Плодородие почв
- •§1. Виды почвенного плодородия
- •29. Макро, микроэлементы в питании растений
- •Методы химической мелиорации почв
- •31. Учение в.В. Докучаева о почвенной зональности и характеристика основных типов почв.
- •32.Классификация ,номенклатура, диагностика почв.
7. Понятие о горной породе
На протяжении своего существования Земля прошла длинный ряд непрерывных изменений. Они вызываются процессами различными по скорости, по масштабности и по источникам энергии. Эти процессы перемещения вещества, видоизменяющие земную кору и поверхность Земли, называются геологическими или геодинамическими.
Эндогенными процессами называются такие геологические процессы, происхождение которых связано с глубокими недрами Земли. В недрах Земли под внешними ее оболочками происходят сложные физико-механические и физико-химические преобразования вещества, в результате которых возникают мощные силы, воздействующие на земную кору, за счет которых они преобразуют ее. Эндогенные процессы коренным образом меняют характер земной коры и, в частности, ее поверхности; они приводят к созданию основных форм рельефа поверхности Земли – горных стран и отдельных возвышенностей, огромных впадин – вместилищ океанической и морской воды и др. Основными внутренними источниками энергии Земли являются: гравитационная дифференциация, ротационные (вращательные) силы, радиоактивный распад, химические и фазовые превращения, происходящие в недрах. Процессы, вызванные этими источниками энергии, называются эндогеннымиили процессами внутренней динамики. К ним относят:
1. тектонические движения (колебательные и горообразовательные);
2. магматизм;
3. метаморфизм;
4. землетрясения;
Вторая группа процессов вызвана внешними источниками энергии и проявляется на поверхности Земли и их называют экзогенными. Это солнечная энергия и гравитация, перемещения водных и воздушных масс, влияние различных растительных и животных организмов, их воздействие на горные породы и минералы. Такие процессы называются экзогенными или процессами внешней динамики. К ним относят:
1. выветривание;
2. влияние текучих поверхностных и подземных вод;
3. влияние ледников и водно-ледниковых потоков;
4. процессы в мерзлой зоне литосферы;
5. влияние морей и океанов, озер и болот;
6. гравитационные процессы;
7. деятельность человека (техногенез).
Эндогенные и экзогенные процессы действуют одновременно и тесно связаны друг с другом
Горные породы – природная совокупность минералов более или менее постоянного минералогического состава, образующая самостоятельное тело в земной коре
Горные породы формируются при различных процессах, протекающих как в недрах Земли, так и на ее поверхности, образуя сплавы, механические смеси, состоящие из одного (мрамор) или нескольких минералов (гранит) (рис. 2.5).
Рис. 2.5. Происхождение горных пород.
Горные породы классифицируют по происхождению (по генезису) и химическому составу. По происхождению выделяют магматические, осадочные и метаморфические породы (рис. 2.6).
Рисунок 2.6. Классификация горных пород по типу образования
Магматические и метаморфические горные породы слагают около 90 % объёма земной коры, однако, на поверхности материков области их распространения сравнительно невелики. Остальные 10 % приходятся на долю осадочных пород, занимающих 75 % площади земной поверхности.
Магматические горные породы подразделяют на интрузивные – глубинные и эффузивные – излившиеся.
Интрузивные горные породы образуются в недрах Земли в условиях высоких давлений и очень медленного остывания. Магма на глубине нескольких десятков километров от поверхности Земли находится под очень большим всесторонним гидростатическим давлением, достигающим нескольких тысяч атмосфер, и обладает высокой температурой. При внедрении магмы в вышележащие слои Земли физическая обстановка изменяется: магма встречается с твердыми и относительно холодными породами и начинает застывать и кристаллизоваться. Однако отдача тепла магмой в окружающую среду происходит очень медленно, так как теплопроводность горных пород низка. Температура магмы падает постепенно в течение миллионов лет. Примером может служить следующее наблюдение: на Северном Кавказе в районе Пятигорска интрузия магмы произошла в конце палеогенового периода (~30 млн. лет назад). Однако и в настоящее время разогретые массы магмы существуют на сравнительно небольшой глубине, на что указывают выходящие на поверхность земли горячие источники.
При медленном остывании магмы происходит постепенная и последовательная раздельная кристаллизация входящих в ее состав химических соединений, каждое из которых превращается в кристалл какого-либо минерала. Благодаря медленному росту кристаллы могут достигать относительно больших размеров, поэтому для многих интрузивных пород характерна крупно кристаллическая структура. В результате медленного остывания магмы происходит полная кристаллизация всего ее вещества, и в возникшей породе не остается аморфных участков.
Образующиеся в ходе кристаллизации минералы выпадают из расплава в определенной временной последовательности. Эту последовательность определяет степень тугоплавкости минералов, а также химический состав магмы. Большую роль в процессе кристаллизации играют летучие парообразные и газообразные вещества, способствующие и часто определяющие порядок и скорость кристаллизации минералов.
Поясним это на примере магмы гранитного состава, в результате кристаллизации которой на глубине образуется порода – гранит. В состав гранита входят такие породообразующие минералы, как полевые шпаты, кварц, из темноцветных силикатов – и реже роговая обманка (табл. 2.4). Температура плавления биотита и роговой обманки очень высокая (при 600 МПа 620–270 оС), поэтому их кристаллы образуются еще в жидкой магме.
Во вторую фазу кристаллизации возникают кристаллы полевых шпатов, температура плавления которых ниже, чем у темных силикатов (при 105 Па 1120 – 1250 оС). В отличие от условий первой фазы при кристаллизации полевых шпатов в жидкой массе магмы уже существуют твердые кристаллы темноцветных силикатов. Вследствие этого кристаллы полевых шпатов могут «обрастать» кристаллы биотита или роговой обманки и включать их в себя.
После кристаллизации темных и светлых силикатов порода окажется сформированной на 75—80% объема. Кремнезем, содержащийся в гранитной магме в избытке, начнет переходить в твердое кристаллическое состояние в последнюю очередь, превращаясь в кварц. Его кристаллы занимают свободное пространство между ранее образовавшимися кристаллами биотита, роговой обманки и полевого шпата и приобретать вид зерен неправильной формы, хотя внутреннее строение их кристаллической решетки вполне правильно. В итоге произойдет полная кристаллизация магмы, все ее вещество примет кристаллическое строение. Возникшая таким путем структура породы получила название полнокристаллической. Полнокристаллическая структура дает информацию о глубинных, или абиссальных, условия застывания магмы.
На больших глубинах в условиях всестороннего давления ориентировка осей и плоскостей растущих кристаллов ничем не контролируется, и расположение их в породе случайно. Подобную текстуру породы называют массивной, неориентированной; она характерна в основном для глубинных пород.
В ходе магматической интрузии возможно течение вязкой массы магмы, хотя и в ограниченных пределах. При этом кристаллы с удлиненными формами, например столбики роговых обманок и листочки слюды, ориентируются длинными осями параллельно направлению потоков в магме. Образуется так называемая флюидальная текстура. Встречаясь в интрузивных породах, она, однако, более типична для пород эффузивных.
Эффузивные горные породы образуются при излиянии на поверхность земли расплавленной магмы. При эффузии почти мгновенно, меняются температура окружающей среды и давление, снижающееся от нескольких тысяч атм. до 1 атм. В результате этого вначале начинается бурное выделение газов, растворенных в магме, сопровождающееся взрывами. Лава, выходящая из жерла вулкана, расплескивается, выбрасываясь вверх брызгами. Выделяющиеся из лавы газы могут ее вспенивать, образуя многочисленные пузыри, сохраняющиеся и при затвердевании вещества. Так образуется пузырчатая текстура. Порода подобного сложения получила название пемзы. Ее плотность настолько низка, что пемза плавает в воде.
Резко снижающаяся температура создает условия, при которых одновременно кристаллизуются многие минералы. Однако очень быстрое затвердевание вещества приводит к образованию мелких зачаточных форм кристаллов, которые можно обнаружить только под микроскопом. Значительная часть породы превращается в аморфную или стекловатую массу. Такая структура пород называется скрытокристаллической. При очень быстром остывании лавы процесс кристаллизации может и вовсе не начаться, в этом случае порода целиком будет состоять из вулканического стекла. Такая порода названа обсидианом. Это черная, темно-серая или темно-бурая порода с раковистым изломом, похожая на глыбу стекла. Полости газовых пузырей часто заполняются минералами, которые образуются вторично – в результате их кристаллизации из растворов горячих вод, проникших в застывшую лаву. При этом на фоне темно-серой породы, имеющей скрытокристаллическую структуру, выделяются округлые светлые пятна таких включений. Обычно они представлены такими минералами как кальцит и аморфный кремнезем – опал и халцедон.
С процессом извержения вулканов связано также образование группы пород, которые принято называть пиропластическими. Выделяющиеся из магмы газы часто скапливаются внутри жерла вулкана в таких больших количествах и под столь большим давлением, что возникают мощные взрывы, выбрасывающие высоко в атмосферу огромные массы лавы, состоящей из частиц самых разных размеров. Они остывают в воздухе и падают на землю в виде твердых пылинок, горошин и более крупных обломков. Их называют вулканическим пеплом. Массы этого вулканического материала покрывают окрестности извергающегося вулкана толстым рыхлым слоем. Дожди смачивают его, и он приходит в движение, образуя потоки вулканической грязи. Высыхая, грязь превращается в легкую пористую и твердую породу, называемую туфом. Подобная порода, образованная на дне моря или озера называется туффитом.
Классификация интрузивных и эффузивных пород строят на основе указанных выше особенностей структуры и текстуры, а также их химического и минералогического состава. По химическому составу магматические горные породы делят в зависимости от содержания в них окиси кремния SiO2 (табл. 2.5). Кислые породы чаще бывают светлыми, иногда белыми. С уменьшением содержания кремнезема окраска породы изменяется от серой до темно-серой. Для ультраосновных пород характерна черная или темно-зеленая окраска, зависящая от увеличения содержания темноцветных минералов, богатых окислами железа и магния.
Наибольшее распространение в земной коре имеют граниты (интрузивные породы), андезиты и базальты (эффузивные породы).
Граниты составляют ~30% массы земной коры. Граниты состоят в основном из трех минералов: кварца, полевого шпата и слюды (или роговой обманки).
Андезиты – породы с вкраплениями из полевых шпатов (альбита, анортита), роговой обманки, слюд и пироксена – составляют ~25% массы земной коры.
Базальты составляют ~ 20% массы земной коры, в их состав входят преимущественно полевые шпаты, пироксен, оливин. Остальное приходится на долю всех остальных горных пород.
Осадочные горные породы образуются при механическом и химическом разрушении магматических пород под действием воды, воздуха и органического вещества.
По признаку происхождения их делят на три группы: обломочные, химические и органические.
Обломочные горные породы образуются в процессах разрушения, переноса и отложения обломков горных пород. Это чаще всего каменистые осыпи, галечники, пески, суглинки, глины и лёссы. Обломочные породы разделяют по крупности:
· грубообломочные (> 2 мм); остроугольные обломки – дресва, щебень, сцементированные глинистыми сланцами, образуют брекчии, а окатанные – гравий, галька – конгломераты );
· среднеобломочные (от 2 до 0,5 мм) – образуют пески;
· мелкообломочные, или пылеватые – образуют лёссы;
· тонкообломочные, или глинистые (< 0,001 мм) – при уплотнении превращаются в глинистые сланцы.
Осадочные породы химического происхождения – соли и отложения, образующиеся из насыщенных водных растворов. Они имеют слоистое строение, состоят из галоидных, сернокислых и карбонатных минералов. К ним относятся каменная соль, гипс, карналлит, опоки, мергель, фосфориты, железо-марганцевые конкреции и т.д. (табл. 2.4). Они могут образовываться в смеси с обломочными и органическими отложениями.
Мергель образуется при вымывании из известняков карбоната кальция, содержит глинистые частицы, плотный, светлый.
Железо-марганцевые конкреции образуются из коллоидных растворов и под действием микроорганизмов и создают шариковидные залежи железных руд. Фосфориты образуются в форме шишковидных конкреций неправильной формы, при слиянии которых возникают фосфоритные плиты – залежи фосфоритовых руд серого и буроватого цветов.
Горные породы органического происхождения широко распространены в природе – это останки животных и растений: кораллы, известняки, ракушечники, радиоляриевые, диатомовые и различные черные органические илы, торф, каменные и бурые угли, нефть.
Осадочная толща земной коры формируется под воздействием климата, ледников, стока, почвообразования, жизнедеятельности организмов, и ей присуща зональность: зональные донные илы в Мировом океане и континентальные отложения на суше (ледниковые и водно-ледниковые в полярных областях, торф в тайге, соли в пустыне и т. д.). Осадочные толщи накапливались в течение многих миллионов лет. За это время картина зональности многократно менялась в связи с переменами в положении оси вращения Земли и другими астрономическими причинами. Для каждой конкретной геологической эпохи можно восстановить систему зон с соответствующей ей дифференциацией процессов осадконакопления. Строение современной осадочной оболочки – это результаты перекрытия множества разновременных зональных систем.
На большей части территории земного шара почвообразование идет на осадочных горных породах. В северной части Азии, Европы и Америки обширные пространства заняты породами, отложенными ледниками четвертичного периода (мореной) и продуктами размывания их талыми ледниковыми водами.
Моренные суглинки и супеси. Эти породы отличаются неоднородностью состава: они представляют сочетание глины, песка и валунов различного размера. Супесчаные почвы содержат больше Si02 и меньше других окислов. Окраска большей частью красно-бурая, иногда палевая или светло-бурая; сложение плотное. Более благоприятную среду для растений представляют моренные отложения, содержащие валуны известковых пород.
Покровные глины и суглинки - безвалунные, мелкоземистые породы. Состоят преимущественно из частиц меньше 0,05 мм в диаметре. Окраска буровато-желтая, большей частью обладают мелкой пористостью. Содержат больше элементов питания, чем описанные выше пески.
Лессовидные суглинки и лессы – безвалунные, мелкоземистые, карбонатные, палевые и желто-палевые, мелкопористые породы. Для типичных лессов характерно преобладание частиц диаметром 0,05-0,01 мм. Встречаются также разновидности с преобладанием частиц диаметром меньше 0,01 мм. Содержание углекислого кальция колеблется от 10 до 50%. Верхние слои лессовидных суглинков нередко бывают освобождены от углекислого кальция. В бескарбонатной части преобладают кварц, полевые шпаты, глинистые минералы.
Красноцветная кора выветривания. В странах с тропическим и субтропическим климатом широко распространены мелкоземистые отложения третичного возраста. Они отличаются красноватой окраской, сильно обогащены алюминием и железом и обеднены другими элементами.
Коренные породы. На значительных территориях на поверхность выходят морские и континентальные породы дочетвертичного возраста, объединяемые под названием «коренные породы». Названные породы особенно распространены в Поволжье, а также в предгорьях и горных странах. Среди коренных пород широко распространены карбонатные и мергелистые суглинки и глины, известняки, а также песчаные отложения. Следует отметить обогащенность многих песчаных коренных пород элементами питания. Кроме кварца эти пески содержат значительные количества других минералов: слюд, полевых шпатов, некоторых силикатов и т. д. В качестве материнской горной породы они резко отличаются от древнеаллювиальных кварцевых песков. Состав коренных пород очень разнообразен и недостаточно изучен.
Метаморфические горные породы – это магматические и осадочные горные породы, измененные температурой, давлением и химически активными веществами. Метаморфоза горных пород происходит под влиянием следующих факторов:
- давления, возникающего при горообразовательных процессах;
- повышения температуры, вызванного внедряющейся в литосферу магмой, горячих водных растворов и газов, несущих новые химически активные соединения;
- давления вышележащих горных пород.
Одна из последних классификаций метаморфизма приведена в табл. 2.6.
Например, при накоплении осадочных горных пород мощностью 10 – 14 км нижние их слои испытывают огромное давление, сопровождающееся повышением температуры и перекристаллизацией всего материала. В результате этого процесса из глин образуются сначала сланцы, а затем гнейсы, напоминающие по составу гранит. Состав гнейсов различен. Из песков в присутствии соединений железа сначала образуются песчаники, очень легко рассыпающиеся при приложении небольших усилий, а затем кварциты, т.е. кристаллическая горная порода. Кварциты и гнейсы сохраняют слоистое строение, характерное для осадочных пород. Известняки при перекристаллизации образуют мрамор.
Таким образом, процессы метаморфизма как бы заключают цикл изменений, происходящих с горными породами.
9-10 Рельеф слагается из отдельных чередующихся между собой форм рельефа разного размера. К формам рельефа относят неровности земной поверхности, имеющие объемное выражение, т. е. любая форма рельефа может быть выражена в трех измерениях — высоте (глубине), длине, ширине.
Каждая форма рельефа состоит из элементов рельефа. К ним относятся ровные поверхности и склоны, а также линии, возникающие на пересечении двух поверхностей (бровка, подошва, тальвег) и углы, возникающие на пересечении трех и более граней (вершина).
Формы рельефа различаются по разным признакам.
По величине наклона земной поверхности
выделяются субгоризонтальные поверхности суглами наклона до 2° и склоны — более 2°. Формы рельефа могут быть замкнутыми (холм) и открытыми (овраг), вогнутыми (воронка) и выпуклыми (бархан), простыми (западина) и сложными (горный хребет). По размеру выделяют планетарные формы, мега-, макро-, мезо-, микро- и нано-формы рельефа.
Планетарные формы занимают площади в миллионы квадратных километров. К ним относятся: материки (в геофизическом смысле), переходные зоны от материков к ложу океана, ложе океана и срединно-океанические хребты. Все они различаются строением земной коры, что и послужило серьезным основанием для выделения перечисленных форм в качестве планетарных.
Мегаформы занимают площади в сотни и десятки тысяч квадратных километров. Это горные пояса (Кавказ), плоскогорья (Среднесибирское), равнины (Западно-Сибирская) в пределах материков, котловины и поднятия на ложе океана и др.
Макроформы имеют площади в сотни и тысячи квадратных километров. Это части мега-форм: отдельные хребты и межгорные впадины — в горах, возвышенности и низменности — на равнинах.
Мезоформы занимают квадратные километры и их первые десятки. Это овраги, балки, моренные холмы, барханы и др.
Микроформы — карстовые воронки, прирусловые валы на пойме и др.
Наноформы — кочки, эрозионные борозды, песчаная рябь на барханах и др.
Планетарные и крупные формы рельефа образовались за счет внутренних сил Земли. Средние — мезоформы — и мелкие формы обязаны действию экзогенных процессов: работе поверхностных текучих вод, растворяющей деятельности воды, ледников, ветра и др. К экзогенным процессам относится и разнообразная, все возрастающая хозяйственная деятельность человека.
Академик И. П. Герасимов, возглавлявший с 1951 по 1985 г. Институт географии Академии наук СССР, и Ю. А. Мещеряков предложили принцип разделения всех форм рельефа Земли на три категории, различающиеся по порядку величины (размерам) и происхождению с учетом возраста рельефа (начала его формирования).
Геотектуры (греч. gе — Земля, лат. tес-tиrа — покрытие) — самые крупные формы рельефа Земли, обусловленные планетарными геофизическими и космическими процессами. К геотектурам первого ранга относятся материковые выступы и океанические впадины, к геотектурам второго ранга — крупнейшие мегаформы: равнинно-платформенные области и горные системы разного генезиса на суше, океанические котловины и срединно-океанические хребты в океане и переходные зоны между материками и океанами. Формирование современных геотектур началось на рубеже палеозоя и мезозоя и совпадает с геоморфологическим этапом развития Земли.
Морфоструктуры (греч. тоrрhе — форма, лат. structura — строение) — крупные формы рельефа — мегаформы и макроформы, которые возникли в результате взаимодействия
эндогенных и экзогенных процессов при щей, активной роли внутренних процессов тектонических движений; в их строении ч« отражаются геологические структуры. Формирование морфоструктур соответствует неотектоническому этапу развития Земли.
Морфоскулыгтуры (греч. тоrрhе форма, лат. sсиlрtиrа — ваяние, резьба) это сравнительно мелкие (мезо-, микро- и т.д. формы рельефа, обязанные своим происхождением прежде всего экзогенным процессам которые тесно связаны с современными и прошлыми климатическими условиями. Возраст морфоскульптур большей частью ограничен рамками четвертичного периода.
В генетическом отношении (не по величине!) геотектуры и морфоструктуры характеризуются относительной общностью и объединяются в категорию морфотектонического рельефа, т. е. рельефа, обусловленного активной ролью эндогенного фактора. Обобщенная классификация форм морфотектонического рельефа (морфоструктур) по их структур генезису и морфологии приведена на схеме 1. Морфотектонический рельеф может быть противопоставлен морфоскульптурному (морфоклиматическому) рельефу, возникшему в основном под воздействием экзогенных процессов, подчиненных закону климатической зональности.
Сочетания форм рельефа, сходные по внешнему облику, внутреннему строению, происхождению и условиям развития, закономерно повторяющиеся на определенной территории образуют морфогенетические типы рельефа (например, холмистые моренные равнины, увалистые долинно-балочные эрозионные равнины, плоские зандровые равнины и пр.)
На подробных геоморфологических картах изображаются либо отдельные формы рельефа, либо морфогенетические типы рельефа, причем на цветном фоне последних знаками отмечаются типичные формы рельефа. На мелкомасштабных картах морфоструктура показывается цветным фоном, а морфоскульптура — штриховкой и значками (например, в Физико-географическом атласе мира).
