- •1. Общий план строения клетки. Функции клетки и ее отдельных элементов (мембаны, органелл, ядра). Ионные каналы, их строение, свойства и роль.
- •2. Современные представления о строении и функциях мембран. Активный и пассивный транспорт. Осмос. Диффузия. Фильтрация.
- •4. Мембранный потенциал, его происхождение. Мембранно-ионная теория (Ходжкин, Хаксли, Катц). Роль ионов калия, натрия, хлора, кальция в происхождении мембранного потенциала.
- •5. Современные представления о процессе возбуждения. Потенциал действия и его фазы. Соотношение фаз возбудимости с фазами потенциала действия
- •6. Законы раздражения возбудимых тканей. Зависимость ответной реакции ткани от параметров раздражения. Закон силы. Закон «все или ничего». Явление аккомодации.
- •7.Действие постоянного тока на живые ткани. Электротон. Катэлнктротон. Анэлектротон. Законы Пфлюгера. Анодный блок и катодическая депрессия
- •8.Лабильность. Фазы парабиоза. Общебиологическое значение учения о парабиозе.
- •9. Нейрон как структурно-функциональная еденица цнс. Физиологические свойства нейрона. Мякотные и безмякотные нервные волокна, их функциональное значение.
- •10.Распространение возбуждения по безмиелиновым и миелиновых нервных волокнам. Законы проведения возбуждения по нервным волокнам. Классификациянервных волокон по скорости возбуждения.
- •11. Синапс. Классификация и функциональные свойства синапсов. Особенности передачи возбуждения в синапсах
- •12. Физиологические свойства скелетных мышц. Функциональная характеристика гладких мышц. Виды и режимы сокращения скелетных мышц. Одиночное сокращение, его фазы. Моторная единица
- •13. Суммация мышечных сокращений. Тетанус, его виды. Оптимум и пессимум раздражения. Сила и работа мышц. Динамическая, статическая, преодолевающая и уступающая работа
- •14.Современная теория мышечного сокращения и расслабления. Роль сократительных белков и кальция в развитии мышечного сокращения. Электрохимическое сопряжение
- •Общие принципы регуляции функций. Рефлекторная деятельность цнс. Нервный центр, свойства нервных центров, особенности проведения возбуждения по нервным центрам.
- •Торможение в цнс (опыт и.М. Сеченова), его виды и роль.
- •Сравнительная морфология и функциональная характеристика соматической и вегетативной нервной системы.
- •Медиаторы вегетативной нервной системы. Холинэргические и адренэргические системы. Понятие об адрено-, м- и н-холинореактивных структурах. Вегетотропные вещества, их классификация.
- •Общие принципы гуморальной регуляции функций. Роль специфических и неспецифических метаболитов в регуляции функций.
- •Гормональная регуляция. Понятие о гормонах, их классификация и свойства. Парагормоны. Типы функционального влияния гормонов
- •Гипоталамо-гипофизарная система, ее роль в регуляции функций.
- •Гипофиз. Гормоны передней, средней и задней долей гипофиза, их физиологическая роль.
- •Щитовидная железа. Гормоны щитовидной железы, их физиологическая роль.
- •Паращитовидные железы. Гормоны паращитовидных желез, их физиологические значение.
- •Надпочечники. Гормоны коркового и мозгового вещества надпочечников, их физиологическое значение.
- •Эндокринная функция поджелудочной железы. Ее роль в регуляции обмена веществ.
- •Половые железы, мужские и женские половые гормоны, их физиологическая роль в формировании пола
- •Кровь, как разновидность соединительной ткани. Понятие о системе крови (г.Ф. Ланг), ее свойства и функции. Основные физиологические константы крови.
- •Плазма крови, ее состав. Физико-химические свойства крови. Белки плазмы крови, их характеристика и функциональное значение.
- •Общая характеристика форменных элементов крови (эритроцитов, лейкоцитов, тромбоцитов) и их роль в организме.
- •Лейкоциты, их разновидности. Функции различных видов лейкоцитов. Клинико-физиологическая оценка лейкоцитов.
- •Эритроциты, их функции в организме. Свойства эритроцитов (соэ, орэ, гемолиз). Клинико-физиологическая оценка эритроцитов.
- •Гемоглобин. Виды гемоглобина и его соединения с газами. Цветовой показатель. Клинико-физиологическая оценка гемоглобина.
- •Группы крови. Система аво. Резус-фактор. Переливание крови.
- •Понятие о гемостазе. Виды гемостаза. Роль тромбоцитов и сосудистой стенки в гемостазе.
- •Сосудисто-тромбоцитарный гемостаз.
- •Тромбоциты.
- •Гемокоагуляция (собственно свертывание крови).
- •1 Фаза – образование протромбиназного комплекса.
- •2 Фаза свертывания – образование тромбина.
- •3 Фаза свертывания – образование фибрина.
- •Противосвертывающие факторы. Фибринолитическая система крови.
Надпочечники. Гормоны коркового и мозгового вещества надпочечников, их физиологическое значение.
Мозговое вещество
Находясь в более глубокой части железы, мозговое вещество состоит из ткани, содержащей большое количество кровеносных сосудов. Благодаря мозговому веществу в ситуации боли, страха, стресса вырабатываются два основных гормона: адреналин и норадреналин. Сердечная мышца начинает усиленно сокращаться. Поднимается артериальное давление, может происходить спазм мышц.
Корковое вещество
На поверхности надпочечника располагается корковое вещество, строение которого подразделяется на три зоны. Клубочковая зона, расположенная под капсулой, содержит скопление клеток, собранных в группки неправильной формы, которые разделяются кровеносными сосудами. Пучковая зона образует следующий слой, состоящий из тяжей и капилляров. Между мозговым и корковым веществом располагается третья зона – сетчатая, которая включает в себя более крупные тяжи расширенных капилляров. Гормоны коры надпочечника принимают участие в процессе роста организма, обменных функциях.
Эндокринная функция поджелудочной железы. Ее роль в регуляции обмена веществ.
Поджелудочная железа – железа со смешанной функцией. Морфологической единицей железы служат островки Лангерганса, преимущественно они расположены в хвосте железы. Бета-клетки островков вырабатывают инсулин, альфа-клетки – глюкагон, дельта-клетки – соматостатин. В экстрактах ткани поджелудочной железы обнаружены гормоны ваготонин и центропнеин.
Инсулин регулирует углеводный обмен, снижает концентрацию сахара в крови, способствует превращению глюкозы в гликоген в печени и мышцах. Он повышает проницаемость клеточных мембран для глюкозы: попадая внутрь клетки, глюкоза усваивается. Инсулин задерживает распад белков и превращение их в глюкозу, стимулирует синтез белка из аминокислот и их активный транспорт в клетку, регулирует жировой обмен путем образования высших жирных кислот из продуктов углеводного обмена, тормозит мобилизацию жира из жировой ткани.
В бета-клетках инсулин образуется из своего предшественника проинсулина. Он переносится в клеточные аппарат Гольджи, где происходят начальные стадии превращения проинсулина в инсулин.
В основе регуляции инсулина лежит нормальное содержание глюкозы в крови: гипергликемия приводит к увеличению поступления инсулина в кровь, и наоборот.
Паравентрикулярные ядра гипоталамуса повышают активность при гипергликемии, возбуждение идет в продолговатый мозг, оттуда в ганглии поджелудочной железы и к бета-клеткам, что усиливает образование инсулина и его секрецию. При гипогликемии ядра гипоталамуса снижают свою активность, и секреция инсулина уменьшается.Гипергликемия непосредственно приводит в возбуждение рецепторный аппарат островков Лангерганса, что увеличивает секрецию инсулина. Глюкоза также непосредственно действует на бета-клетки, что ведет к высвобождению инсулина.
Глюкагон повышает количество глюкозы, что также ведет к усилению продукции инсулина. Аналогично действует гормоны надпочечников.
ВНС регулирует выработку инсулина посредством блуждающего и симпатического нервов. Блуждающий нерв стимулирует выделение инсулина, а симпатический тормозит.
Количество инсулина в крови определяется активностью фермента инсулиназы, который разрушает гормон. Наибольшее количество фермента находится в печени и мышцах. При однократном протекании крови через печень разрушается до 50 % находящегося в крови инсулина.
Важную роль в регуляции секреции инсулина выполняет гормон соматостатин, который образуется в ядрах гипоталамуса и дельта-клетках поджелудочной железы. Соматостатин тормозит секрецию инсулина.
Глюкагон принимает участие в регуляции углеводного обмена, по действию на обмен углеводов он является антагонистом инсулина. Глюкагон расщепляет гликоген в печени до глюкозы, концентрация глюкозы в крови повышается. Глюкагон стимулирует расщепление жиров в жировой ткани.
Механизм действия глюкагона обусловлен его взаимодействием с особыми специфическими рецепторами, которые находятся на клеточной мембране. При связи глюкагона с ними увеличивается активность фермента аденилатциклазы и концентрации цАМФ, цАМФ способствует процессу гликогенолиза.
Регуляция секреции глюкагона. На образование глюкагона в альфа-клетках оказывает влияние уровень глюкозы в крови. При повышении глюкозы в крови происходит торможение секреции глюкагона, при понижении – увеличение. На образование глюкагона оказывает влияние и передняя доля гипофиза.
Гормон роста соматотропин повышает активность альфа-клеток. В противоположность этому гормон дельта-клетки – соматостатин тормозит образование и секрецию глюкагона, так как он блокирует вхождение в альфа-клетки ионов Ca, которые необходимы для образования и секреции глюкагона.
Липокаин способствует утилизации жиров за счет стимуляции образования липидов и окисления жирных кислот в печени, он предотвращает жировое перерождение печени.
Ваготонин повышает тонус блуждающих нервов, усиливает их активность.
Центропнеин участвует в возбуждении дыхательного центра, содействует расслаблению гладкой мускулатуры бронхов, повышает способность гемоглобина связывать кислород, улучшает транспорт кислорода.
