- •1. Общий план строения клетки. Функции клетки и ее отдельных элементов (мембаны, органелл, ядра). Ионные каналы, их строение, свойства и роль.
- •2. Современные представления о строении и функциях мембран. Активный и пассивный транспорт. Осмос. Диффузия. Фильтрация.
- •4. Мембранный потенциал, его происхождение. Мембранно-ионная теория (Ходжкин, Хаксли, Катц). Роль ионов калия, натрия, хлора, кальция в происхождении мембранного потенциала.
- •5. Современные представления о процессе возбуждения. Потенциал действия и его фазы. Соотношение фаз возбудимости с фазами потенциала действия
- •6. Законы раздражения возбудимых тканей. Зависимость ответной реакции ткани от параметров раздражения. Закон силы. Закон «все или ничего». Явление аккомодации.
- •7.Действие постоянного тока на живые ткани. Электротон. Катэлнктротон. Анэлектротон. Законы Пфлюгера. Анодный блок и катодическая депрессия
- •8.Лабильность. Фазы парабиоза. Общебиологическое значение учения о парабиозе.
- •9. Нейрон как структурно-функциональная еденица цнс. Физиологические свойства нейрона. Мякотные и безмякотные нервные волокна, их функциональное значение.
- •10.Распространение возбуждения по безмиелиновым и миелиновых нервных волокнам. Законы проведения возбуждения по нервным волокнам. Классификациянервных волокон по скорости возбуждения.
- •11. Синапс. Классификация и функциональные свойства синапсов. Особенности передачи возбуждения в синапсах
- •12. Физиологические свойства скелетных мышц. Функциональная характеристика гладких мышц. Виды и режимы сокращения скелетных мышц. Одиночное сокращение, его фазы. Моторная единица
- •13. Суммация мышечных сокращений. Тетанус, его виды. Оптимум и пессимум раздражения. Сила и работа мышц. Динамическая, статическая, преодолевающая и уступающая работа
- •14.Современная теория мышечного сокращения и расслабления. Роль сократительных белков и кальция в развитии мышечного сокращения. Электрохимическое сопряжение
- •Общие принципы регуляции функций. Рефлекторная деятельность цнс. Нервный центр, свойства нервных центров, особенности проведения возбуждения по нервным центрам.
- •Торможение в цнс (опыт и.М. Сеченова), его виды и роль.
- •Сравнительная морфология и функциональная характеристика соматической и вегетативной нервной системы.
- •Медиаторы вегетативной нервной системы. Холинэргические и адренэргические системы. Понятие об адрено-, м- и н-холинореактивных структурах. Вегетотропные вещества, их классификация.
- •Общие принципы гуморальной регуляции функций. Роль специфических и неспецифических метаболитов в регуляции функций.
- •Гормональная регуляция. Понятие о гормонах, их классификация и свойства. Парагормоны. Типы функционального влияния гормонов
- •Гипоталамо-гипофизарная система, ее роль в регуляции функций.
- •Гипофиз. Гормоны передней, средней и задней долей гипофиза, их физиологическая роль.
- •Щитовидная железа. Гормоны щитовидной железы, их физиологическая роль.
- •Паращитовидные железы. Гормоны паращитовидных желез, их физиологические значение.
- •Надпочечники. Гормоны коркового и мозгового вещества надпочечников, их физиологическое значение.
- •Эндокринная функция поджелудочной железы. Ее роль в регуляции обмена веществ.
- •Половые железы, мужские и женские половые гормоны, их физиологическая роль в формировании пола
- •Кровь, как разновидность соединительной ткани. Понятие о системе крови (г.Ф. Ланг), ее свойства и функции. Основные физиологические константы крови.
- •Плазма крови, ее состав. Физико-химические свойства крови. Белки плазмы крови, их характеристика и функциональное значение.
- •Общая характеристика форменных элементов крови (эритроцитов, лейкоцитов, тромбоцитов) и их роль в организме.
- •Лейкоциты, их разновидности. Функции различных видов лейкоцитов. Клинико-физиологическая оценка лейкоцитов.
- •Эритроциты, их функции в организме. Свойства эритроцитов (соэ, орэ, гемолиз). Клинико-физиологическая оценка эритроцитов.
- •Гемоглобин. Виды гемоглобина и его соединения с газами. Цветовой показатель. Клинико-физиологическая оценка гемоглобина.
- •Группы крови. Система аво. Резус-фактор. Переливание крови.
- •Понятие о гемостазе. Виды гемостаза. Роль тромбоцитов и сосудистой стенки в гемостазе.
- •Сосудисто-тромбоцитарный гемостаз.
- •Тромбоциты.
- •Гемокоагуляция (собственно свертывание крови).
- •1 Фаза – образование протромбиназного комплекса.
- •2 Фаза свертывания – образование тромбина.
- •3 Фаза свертывания – образование фибрина.
- •Противосвертывающие факторы. Фибринолитическая система крови.
Торможение в цнс (опыт и.М. Сеченова), его виды и роль.
Торможение – активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения, функционального отправления ткани нет.
Торможение может развиваться только в форме локального ответа.
Выделяют два типа торможения:
1) первичное. Для его возникновения необходимо наличие специальных тормозных нейронов. Торможение возникает первично без предшествующего возбуждения под воздействием тормозного медиатора.
Различают два вида первичного торможения:
- пресинаптическое в аксо-аксональном синапсе;
- постсинаптическое в аксодендрическом синапсе.
2) вторичное. Не требует специальных тормозных структур, возникает в результате изменения функциональной активности обычных возбудимых структур, всегда связано с процессом возбуждения.
Виды вторичного торможения:
- запредельное, возникающее при большом потоке информации, поступающей в клетку. Поток информации лежит за пределами работоспособности нейрона;
- пессимальное, возникающее при высокой частоте раздражения; парабиотическое, возникающее при сильно и длительно действующем раздражении;
- торможение вслед за возбуждением, возникающее вследствие снижения функционального состояния нейронов после возбуждения;
- торможение по принципу отрицательной индукции;
- торможение условных рефлексов.
Торможение лежит в основе координации движений, обеспечивает защиту центральных нейронов от перевозбуждения. Торможение в ЦНС может возникать при одновременном поступлении в спинной мозг нервных импульсов различной силы с нескольких раздражителей. Более сильное раздражение тормозит рефлексы, которые должны были наступать в ответ на более слабые.
В 1862 г. И. М. Сеченов открыл явление центрального торможения. Он доказал в своем опыте, что раздражение кристалликом хлорида натрия зрительных бугров лягушки (большие полушария головного мозга удалены) вызывает торможение рефлексов спинного мозга. После устранения раздражителя рефлекторная деятельность спинного мозга восстанавливалась. Результат этого опыта позволил И. М. Сеченому сделать заключение, что в ЦНС наряду с процессом возбуждения развивается процесс торможения, который способен угнетать рефлекторные акты организма. Н. Е. Введенский высказал предположение, что в основе явления торможения лежит принцип отрицательной индукции: более возбудимый участок в ЦНС тормозит активность менее возбудимых участков.
Современная трактовка опыта И. М. Сеченова (И. М. Сеченов раздражал ретикулярную формацию ствола мозга): возбуждение ретикулярной формации повышает активность тормозных нейронов спинного мозга – клеток Реншоу, что приводит к торможению α-мотонейронов спинного мозга и угнетает рефлекторную деятельность спинного мозга.
Пресинаптическое торможение - это уменьшение или прекращение высвобождения медиатора из пресинаптических нервных окончаний. При этом не происходит генерации тормозного постсинаптического потенциала .
Преимущество пресинаптического торможения состоит в его избирательности, так как происходит торможение отдельных входов нервной клетки, в то время как при постсинаптическом торможенииснижается возбудимость всего нейрона. Снижение количества высвобождающегося медиатора в случае пресинаптического торможения связано с активацией аксо- аксонных синапсов , и, вероятно, обусловлено снижением амплитуды пресинаптического потенциала действия в результате инактивации.
Постсинаптическое торможение - это снижение возбудимости постсинаптической мембраны нейрона, препятствующее распространению импульса.
Нервный импульс в тормозных нейронах вызывает гиперполяризационный сдвиг потенциала, в результате чего уровень мембранного потенциала начинает сильнее отличаться от порогового потенциала, необходимого для генерации потенциала действия. Поэтому гиперполяризация постсинаптической мембраны называется тормозным постсинаптическим потенциалом .
Механизм высвобождения медиатора в тормозных синапсах и возбуждающих синапсах , видимо, аналогичен. Тормозным медиатором в мотонейронах и некоторых других синапсах служит аминокислота глицин. Медиатор, действуя на постсинаптическую мембрану, открывает поры, или каналы, через которые могут проходить все мелкие ионы. Если стенка поры несет электрический заряд, то он препятствует прохождению одноименно заряженных ионов.
При одновременном возникновении возбуждающих и тормозных синаптических процессов амплитуда возбуждающего постсинаптического потенциала уменьшается в зависимости от амплитуды тормозного постсинаптического потенциала .
