- •Предмет генетики. Место генетики среди биологических наук. Значение генетики для решения задач селекции, медицины, биотехнологии, экологии.
- •3.Дифференциальная активность генов в ходе индивидуального развития. Первичная дифференцировка цитоплазмы, действие генов в раннем эмбриогенезе, амплификация генов
- •1.История генетики в кз.
- •2.Кольцевая карта хромосом прокариот.Генетическая рекомбинация при трансформации.
- •3.Онтогенез как реализация наследственно детерминированной программы развития. Опыты по трансплантации ядер. Методы клонирования генетически идентичных организмов.
- •1)Митотический цикл и фазы митоза
- •2)Закономерности нехромосомного наследования .Методы изучения: реципрокные, возвратные и поглощающие скрещивания, метод трансплантации, биохимические методы.
- •9 Билет
- •1.Строение хромосомы
- •2.Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и селекции.
- •3.Генетика определения пола у человека и у дрозофилы.
- •13 Билет
- •1. Закономерности наследования, открытые г. Менделем. Представление г. Менделя о дискретной наследственности. Представление об аллелях и их взаимодействиях. Анализирующее скрещивание.
- •2. Классификация генных мутаций. Роль мобильных генетических элементов в возникновении генных мутаций и хромосомных перестроек.
- •3. Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
- •1.Закономерности наследования в ди- и полигибридных скрещиваниях. Статистический характер расщеплений.
- •2.Химический мутагенез. Особенности мутагенного действия химических агентов. Факторы, модифицирующие мутационный процесс. Антимутагены. Мутагены окружающей среды и методы их тестирования
- •3.Генетика соматических клеток. Химерные (аллофенные) животные.
- •Неаллельные взаимодействия: комплементарность, эпистаз, полимерия. Биохимические основы неаллельных взаимодействий.
- •Ген как единица функции. Перекрывание генов в одном участке днк. Молекулярно-генетические подходы в исследовании тонкого строения генов.
- •Генетическая гетерогенность популяций. Методы изучения природных популяций. Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе.
- •1.Половые хромосомы. Наследование признаков, сцепленных с полом. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Наследование при нерасхождении половых хромосом.
- •2.Полимерная цепная реакция.Саузерн-блот и нозерн-блот анализы.
- •1)Понятие дозовой компенсации. Компенсация дозы генов при определении пола у дрозофилы.
- •2)Структурная организация генома эукариотов. Регуляторные элементы генома.
- •1. Генетический контроль и молекулярные механизмы репликации.
- •2. Понятие дозовой компенсации. Компенсация дозы генов при определении пола у млекопитающих.
- •Билет28
- •22 Билет
- •Определение группы сцепления мутаций d. Melanogaster: использование доминантных и рецессивных маркеров.
- •Мобильные элементы генома. Классификация и биологическая роль
- •3.Понятие о виде и популяции. Популяция как естественно-истори ческая структура. Понятие о частотах генов и генотипов в популяциях. Закон Харди-Вайнберга, возможности его применения.
- •30 Билет
- •1. Представление школы Моргана о строении и функции гена.
- •2. Политенные хромосомы дрозофилы как модельный объект генетических исследований.
- •3. Закон гомологических рядов в наследственной изменчивости (н.И. Вавилов).
- •33 Билет
- •1. Построение физических карт хромосом с помощью методов молекулярной биологии.
- •2. Рекомбинация: гомологический кроссинговер, сайт-специфическая рекомбинация, транспозиции. Генная конверсия.
- •1.Представление о плазмидах, эписомах и мобильных генетических элементах (инсерционные последовательности, транспозоны) прокариот.
- •3.Явление гетерозиса и его генетические механизмы.
- •1.Сайт-специфическая рекомбинация. Генетический контроль и механизмы процессов транспозиции.
- •2.Векторы эукариот.
- •3.Роль наследственности в формировании поведенческих признаков. Генетика поведения дрозофилы.
- •38 Билет
38 Билет
1. У эукариот наряду с регуляторными процессами, влияющими на функционирование отдельной клетки, существуют системы регуляции организма как целого. Гормоны образуются в специализированных клетках желез внутренней секреции и с кровью разносятся по всему телу. Но регулируют они процессы синтеза РНК и белков лишь в так называемых клетках-мишенях. Гормоны связываются с белками-рецепторами, расположенными в мембранах таких клеток, и включают системы изменения структуры клеточных белков. Те в свою очередь могут влиять как на синтез белков на рибосомах, так и на транскрипцию определенных генов. Каждый гормон через систему посредников активирует свою группу генов. Так, например, адреналин включает синтез ферментов, расщепляющих гликоген мышц до глюкозы, а другой гормон – инсулин влияет на образование гликогена из глюкозы в печени. В отличие от прокариот, у которых процессы транскрипции и трансляции не разобщены во времени и в пространстве, у эукариот синтез РНК происходит в ядре клетки, а синтез белков – в цитоплазме. Образующиеся в ядре информационные РНК подвергаются там целому ряду изменений под действием ферментов и в комплексе с различными белками проходят через ядерную оболочку. Разные иРНК транслируются в разное время после их образования. Это зависит от того, с какими белками они связаны в цитоплазме. В отсутствие гормонального сигнала некоторые иРНК остаются нетранслированными долгое время. Разнообразие форм и функций клеток разных организмов зависит от сложного взаимодействия различных генов между собой и с многочисленными веществами, попадающими в клетку извне или образующимися в ней. Познание регуляторных механизмов транскрипции и трансляции необходимо для управления процессами реализации генетической информации. С помощью методов молекулярной биологии было исследовано регуляторное действие гистонов и негистоновых хромосомных белков. Как выяснилось, гистоны, особенно гистон H1, оказывают тормозящее действие на ДНК-зависимый синтез РНК. Негистоновым хромосомным белкам тоже приписывают специфические регуляторные функции . Эти белки снимают блокирующее действие гистонов. На их важную роль указывают, помимо прочего, их большое многообразие, неодинаковое содержание их в хроматине различных тканей и на различных стадиях развития, а также результаты экспериментов по реконструкции хроматина. Однако эти данные спорны, так что регуляторное значение гистонов и негистоновых белков остается неясным.
2. Мутации возникают не мгновенно. Вначале под воздействием мутагенов возникает предмутационное состояние клетки. Различные репарационные системы стремятся устранить это состояние, и тогда мутация не реализуется. Основу репарационных систем составляют различные ферменты, закодированные в генотипе клетки (организма). Таким образом, мутагенез находится под генетическим контролем клетки; это – не физико-химический, а биологический процесс. Напомним, что гены всех без исключения организмов могут находиться в трех функциональных состояниях: неактивном (репрессия), когда обе цепи ДНК образуют двойную спираль, как бы защищенную от внешних воздействий, особенно у эукариот, молекулами специальных белков, так что ген молчит; активном (дерепрессия), когда белковая защита снята, цепи ДНК раскручены и на одной из них идет синтез молекул информационной РНК; и в состоянии репликации , когда двойная спираль ДНК раскручивается и на обеих цепях идет синтез ДНК-копий. Регулировать функциональное состояние тех или иных генов удается, меняя условия культивирования клеток. Еще в 60-е годы обнаружилось, что если синхронизировать деление бактерий и в разные сроки кратковременно облучать их ультрафиолетовыми лучами, то по мере репликации ДНК мутационный спектр меняется -- чаще мутируются то одни, то другие гены. Измененная мутабильность как бы скользит по молекуле ДНК, совпадая с точкой репликации . Явление это, указывающее на связь индуцированной мутабильности гена с его функциональным состоянием, использовали для картирования хромосом некоторых бактерий. Особенности действия химических мутагенов. К химическим мутагенам относятся самые разнообразные вещества. Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации. Например, из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин). Основными причинами, из-за которых может возникнуть спонтанная мутация, остаются эндогенные факторы. К ним относятся побочные продукты метаболизма, ошибки в процессе репликации, репарации или рекомбинации и другие. Сбои в репликации: - спонтанные транзиции и инверсии азотистых оснований; - неправильное встраивание нуклеотидов из-за ошибок ДНК-полимераз; - химическая замена нуклеотидов, например, гуанин-цитозина на аденин-гуанин. Ошибки восстановления: - мутации в генах, ответственных за репарации отдельных участков цепи ДНК после их разрыва под воздействием внешних факторов. Проблемы с рекомбинацией: - сбои в процессах кроссинговера при мейозе или митозе приводят к выпадению и достраиванию оснований. - Читайте подробнее на FB.ru:
3. Огромное количество растительного материала собрали на четырех континентах земного шара Н. И. Вавилов и его сотрудники. Под его руководством и по предложенной им программе этот материал изучался длительное время. Исследования подтвердили предположения Н. И. Вавилова о существовании пяти самостоятельных центров формообразования культурных растений — о пяти центрах их происхождения. И в 1926 году ученый впервые опубликовал свой капитальный труд «Центры происхождения культурных растений». Затем в 1935 году после более детального и длительного изучения сортовых богатств земного шара в лабораториях, на опытных участках ВИРа и его сети Н. И. Вавилов в своей работе «Ботанико-географические основы селекции» значительно расширил прежнее понятие о центрах происхождения культурных растений. В этой работе изложено оригинальное учение о географическом распределении сортовых растительных богатств земного шара как основы, на которой должна базироваться практическая селекция. Н. И. Вавилов впервые попытался установить области происхождения и географическое нахождение основных потенциалов (возможностей) важнейших сельскохозяйственных культур: хлебных злаков, технических, овощных, плодовых и субтропических растений. Порода животных - это совокупность особей в пределах определенного вида животных, яко имеет генетически обусловленные стабильные характеристики ( свойства и признаки ) , отличающие ее от других совокупностей особей этого вида животных, устойчиво передают их потомкам и является результатом интеллектуальной деятельности человека. Животные одной породы похожи по типу телосложения, производительностью, плодовитостью, мастью Сорт растений - группа культурных растений, которые в результате селекции получили определенный набор характеристик ( полезных или декоративных ) , которые отличают эту группу растений от других растений того же вида. Каждый сорт растений имеет уникальное название и сохраняет свои свойства при многократном выращивании. Штамм микроорганизмов - чистая культура определенного вида микроорганизмов, морфологичнии физиологические особенности которой хорошо изучены. Штаммы могут быть выделены из различных источников (почвы, воды, пищевых продуктов) или из одного источника в разное время. Поэтому один и тот же вид бактерий, дрожжей, микроскопических грибов может иметь большое количество штаммов, отличающихся по ряду свойств, например с чувствительностью к антибиотикам, способностью к образованию токсинов, ферментов и других факторов. Штаммы микроорганизмов, которые используются в промышленности для микробиологического синтеза белков (в частности ферментов), антибиотиков, витаминов, органических кислот и т.п., значительно продуктивнее (в результате селекции), чем дикие штаммы. Сохранение разнообразия форм жизни – важнейшая проблема, с которой столкнулось современное человечество. Ещё Г. Гаузе доказал, что устойчивость сообщества тем выше, чем больше число составляющих его видов. Следовательно, сохранение биоразнообразия – единственный механизм стабильности жизни на Земле. Кроме того, чтобы обеспечить питанием растущее население нашей планеты необходимо выведение новых, более продуктивных сортов сельскохозяйственных растений, а для успешной селекции важен постоянный приток генов из новых источников. Традиционным источником генетического материала служат дикие виды растений. Однако в связи с расширением городов, сельскохозяйственных угодий, вырубкой лесов, ухудшением экологии эти виды постепенно вытесняются, а многие из них находятся на грани вымирания, поэтому их необходимо сохранить. Существует несколько способов сохранения генофонда высших растений: заповедники, национальные парки, банки семян. В последнее время большое внимание уделяется созданию и развитию новых способов: пересадочных коллекций каллусных клеток, депонированию культур клеток и, наконец, криосохранению, т. е. хранению объектов при очень низкой температуре, обычно это температура жидкого азота (-196°С). Криосохранение имеет существенные преимущества по сравнению с остальными методами. При сохранении в глубоко замороженном состоянии полностью прекращается обмен веществ, отсутствуют значительные физико-химические молекулярные изменения не только в клетке, но и в окружающей водной среде.
