- •Предмет генетики. Место генетики среди биологических наук. Значение генетики для решения задач селекции, медицины, биотехнологии, экологии.
- •3.Дифференциальная активность генов в ходе индивидуального развития. Первичная дифференцировка цитоплазмы, действие генов в раннем эмбриогенезе, амплификация генов
- •1.История генетики в кз.
- •2.Кольцевая карта хромосом прокариот.Генетическая рекомбинация при трансформации.
- •3.Онтогенез как реализация наследственно детерминированной программы развития. Опыты по трансплантации ядер. Методы клонирования генетически идентичных организмов.
- •1)Митотический цикл и фазы митоза
- •2)Закономерности нехромосомного наследования .Методы изучения: реципрокные, возвратные и поглощающие скрещивания, метод трансплантации, биохимические методы.
- •9 Билет
- •1.Строение хромосомы
- •2.Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и селекции.
- •3.Генетика определения пола у человека и у дрозофилы.
- •13 Билет
- •1. Закономерности наследования, открытые г. Менделем. Представление г. Менделя о дискретной наследственности. Представление об аллелях и их взаимодействиях. Анализирующее скрещивание.
- •2. Классификация генных мутаций. Роль мобильных генетических элементов в возникновении генных мутаций и хромосомных перестроек.
- •3. Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
- •1.Закономерности наследования в ди- и полигибридных скрещиваниях. Статистический характер расщеплений.
- •2.Химический мутагенез. Особенности мутагенного действия химических агентов. Факторы, модифицирующие мутационный процесс. Антимутагены. Мутагены окружающей среды и методы их тестирования
- •3.Генетика соматических клеток. Химерные (аллофенные) животные.
- •Неаллельные взаимодействия: комплементарность, эпистаз, полимерия. Биохимические основы неаллельных взаимодействий.
- •Ген как единица функции. Перекрывание генов в одном участке днк. Молекулярно-генетические подходы в исследовании тонкого строения генов.
- •Генетическая гетерогенность популяций. Методы изучения природных популяций. Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе.
- •1.Половые хромосомы. Наследование признаков, сцепленных с полом. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Наследование при нерасхождении половых хромосом.
- •2.Полимерная цепная реакция.Саузерн-блот и нозерн-блот анализы.
- •1)Понятие дозовой компенсации. Компенсация дозы генов при определении пола у дрозофилы.
- •2)Структурная организация генома эукариотов. Регуляторные элементы генома.
- •1. Генетический контроль и молекулярные механизмы репликации.
- •2. Понятие дозовой компенсации. Компенсация дозы генов при определении пола у млекопитающих.
- •Билет28
- •22 Билет
- •Определение группы сцепления мутаций d. Melanogaster: использование доминантных и рецессивных маркеров.
- •Мобильные элементы генома. Классификация и биологическая роль
- •3.Понятие о виде и популяции. Популяция как естественно-истори ческая структура. Понятие о частотах генов и генотипов в популяциях. Закон Харди-Вайнберга, возможности его применения.
- •30 Билет
- •1. Представление школы Моргана о строении и функции гена.
- •2. Политенные хромосомы дрозофилы как модельный объект генетических исследований.
- •3. Закон гомологических рядов в наследственной изменчивости (н.И. Вавилов).
- •33 Билет
- •1. Построение физических карт хромосом с помощью методов молекулярной биологии.
- •2. Рекомбинация: гомологический кроссинговер, сайт-специфическая рекомбинация, транспозиции. Генная конверсия.
- •1.Представление о плазмидах, эписомах и мобильных генетических элементах (инсерционные последовательности, транспозоны) прокариот.
- •3.Явление гетерозиса и его генетические механизмы.
- •1.Сайт-специфическая рекомбинация. Генетический контроль и механизмы процессов транспозиции.
- •2.Векторы эукариот.
- •3.Роль наследственности в формировании поведенческих признаков. Генетика поведения дрозофилы.
- •38 Билет
3.Роль наследственности в формировании поведенческих признаков. Генетика поведения дрозофилы.
Наследственность определяют как совокупность природных свойств организма, передаваемых от поколения к поколению
Люди отличаются друг от друга рядом психологических характеристик. Эти различия вызваны как неодинаковыми условиями жизни, так и несходными генотипами, поскольку генотипы людей содержат разные формы генов. Соотносительный вклад наследственности и среды в разнообразие людей по психологическим свойствам и поведению изучает психогенетика. Для оценки влияния наследственности и среды на поведение человека ученые сравнивают людей, имеющих различную степень генетической общности (однояйцевых и многояйцевых близнецов, родных и сводных братьев и сестер, детей и их биологических и приемных родителей).
Влияние наследственности на интеллект и характер в разных возрастах
Исследования показывают, что гены отвечают за 50-70% разнообразия людей по уровню интеллекта и за 28-49% различий по выраженности пяти "универсальных", наиболее важных, свойств личности:
уверенности в себе,
тревожности,
дружелюбию,
сознательности,
интеллектуальной гибкости.
Что представляет собой наследственная предрасположенность к асоциальному поведению?
Связь между риском преступного поведения и генами опосредствована психологическими особенностями. Причем известно, что на риск криминального поведения могут влиять различные неблагоприятные сочетания психологических свойств, и каждое из этих свойств находится под контролем нескольких или большого количества генов и разных факторов среды.
Исследования мужчин с лишней Y-хромосомой позволяют сделать, по меньшей мере, два важных заключения.
Во-первых, связь между генами и преступностью нельзя объяснить генетически обусловленным возрастанием агрессивности или жестокости, как можно было бы предположить, исходя из "здравого смысла". Этот вывод согласуется и с данными исследований приемных детей, в которых влияние наследственности обнаружилось только для преступлений против собственности.
Во-вторых, даже среди мужчин с такой очевидной наследственной аномалией, как лишняя Y-хромосома, большинство не становится преступниками, речь идет только о некотором повышении риска подобного поведения среди них.
Влияние наследственности на злоупотребление алкоголем
Человек не рождается алкоголиком и не существует какого-либо одного "гена алкоголизма", так же как не существует "гена преступности". Алкоголизм является результатом длинной цепи событий, сопровождающих регулярное употребление спиртного. Большое количество генов в определенной степени влияет на эти события. Так, от характера молодого человека зависит, как часто он будет выпивать и будет ли знать меру, а характер, как уже упоминалось, зависит как от воспитания, так и от генотипа. Кроме того, в силу своих генетических особенностей люди в разной степени чувствительны к токсическим эффектам алкоголя.
Генетика поведения дрозофилы. Лучше всего изучены гены, контролирующие такие простые функции, как зрение, обоняние, брачное поведение, способность к обучению.
Зрение: К настоящему времени изучены несколько генов, контролирующих зрительные функции:
Ген sevenless (sev). Мутанты по гену не обнаруживают нормального фототаксиса на ультрафиолетовый свет. Изменяется и стереотип поведения: самки, у которых этот ген поврежден, предпочитают откладывать яйца на поверхности, окрашенные в голубой цвет вместо обычных серого, желтого и коричневого.
Ген optomotor-blind (omb). Гомозиготы по мутациям этого гена не реагируют на вращающиеся вертикальные полосы, особенно сильно во время ходьбы, в полете действие мутаций проявляется слабее.
Ген small-optic-lobes (sol). У мутантных куколок дегенерирует около 50% клеток в оптической доле головного мозга. В результате у мух нарушаются система ориентировки и правильность поведения при посадке после полета.
Обоняние: Дрозофилы могут различать большое количество различных запахов как на личиночной, так и на имагинальной стадии. Эксперименты по хирургии показали, что запахи улавливаются особыми чувствительными органами, расположенными на антенне. В этом органе есть поры, через которые различные химические вещества могут проникнуть и приближаться к нервным окончаниям. От антенн идут нейроны к головному мозгу. Нейронов очень много, около тысячи, поэтому неудивительно, что муха так легко различает многочисленные запахи.
Способность к обучению: Взрослые мухи дрозофилы обладают способностью связывать ощущения запахов с болевыми ощущениями от электрического тока, то есть у них можно вызывать формирование условного рефлекса. К настоящему времени открыты два гена, влияющие на эффективность обучения. Это гены dunce (dnc) и rutabaga (rut);
Ген dunce кодирует фермент - ц-АМФ-циклическую фосфодиэстеразу. Функция осуществляется в клетках определенной доли головного мозга мух - в грибовидном теле. У молодых мух в грибовидном теле быстро возрастает число новых нейронов, что связывают с накоплением опыта в процессе обучения;
Ген rutabaga кодирует определенный продукт - фермент аденилатциклазу, индуцируемую ионами кальция, этот фермент нужен в процессах осуществления запоминания.
Брачное поведение: И самцу и самке присущи довольно сложные наборы движений, так называемые брачные танцы. В это время инициатива принадлежит самцу, он трогает самку, бегает вокруг нее, преследует, исполняя при этом "песню любви". Песня представляет собой вибрацию крыльев продолжительностью 55 с и состоящую из импульсов в 20-30 с. В результате исследований американского ученого Дж. Холла обнаружены мутации по крайней мере трех типов, влияющие на исполнение "песни любви".
В результате мутации cacophony резко увеличивается амплитуда колебаний во время импульса, мутация dissonans изменяет песню таким образом, что вместо правильного чередования импульсов и наблюдается один мощный продолжительный импульс. Мутации гена clock изменяют продолжительность одного цикла "песни любви". Вместо общей продолжительности одного цикла песни в 55 с некоторые мутации уменьшают ее до 40 с, другие увеличивают до 80 с.
Ген fruitless (fru) - бесплодный. Мутации этого гена полностью изменяют половое поведение самцов - возникают сразу три нарушения: 1) они не делают попыток ухаживать за самками, 2) ухаживают только за самцами - такими же гомозиготами по этой мутации, 3) стимулируют нормальных самцов ухаживать за собой
обнаружена при откладке яиц, вылуплении эмбрионов и имаго из куколок. Биоритмична также брачная песня у самцов.
Выделены три группы мутаций:
perS укорачивают биоцикл с 24 до 19 ч,
мутации группы perL удлиняют до 29 ч
per01 полностью нарушают ритмику биологических процессов.
Гены, влияющие на биоритмы: У дрозофилы ген period (per) контролирует правильное осуществление биоритмов. Биоритмика у мух
