- •Предмет генетики. Место генетики среди биологических наук. Значение генетики для решения задач селекции, медицины, биотехнологии, экологии.
- •3.Дифференциальная активность генов в ходе индивидуального развития. Первичная дифференцировка цитоплазмы, действие генов в раннем эмбриогенезе, амплификация генов
- •1.История генетики в кз.
- •2.Кольцевая карта хромосом прокариот.Генетическая рекомбинация при трансформации.
- •3.Онтогенез как реализация наследственно детерминированной программы развития. Опыты по трансплантации ядер. Методы клонирования генетически идентичных организмов.
- •1)Митотический цикл и фазы митоза
- •2)Закономерности нехромосомного наследования .Методы изучения: реципрокные, возвратные и поглощающие скрещивания, метод трансплантации, биохимические методы.
- •9 Билет
- •1.Строение хромосомы
- •2.Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и селекции.
- •3.Генетика определения пола у человека и у дрозофилы.
- •13 Билет
- •1. Закономерности наследования, открытые г. Менделем. Представление г. Менделя о дискретной наследственности. Представление об аллелях и их взаимодействиях. Анализирующее скрещивание.
- •2. Классификация генных мутаций. Роль мобильных генетических элементов в возникновении генных мутаций и хромосомных перестроек.
- •3. Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
- •1.Закономерности наследования в ди- и полигибридных скрещиваниях. Статистический характер расщеплений.
- •2.Химический мутагенез. Особенности мутагенного действия химических агентов. Факторы, модифицирующие мутационный процесс. Антимутагены. Мутагены окружающей среды и методы их тестирования
- •3.Генетика соматических клеток. Химерные (аллофенные) животные.
- •Неаллельные взаимодействия: комплементарность, эпистаз, полимерия. Биохимические основы неаллельных взаимодействий.
- •Ген как единица функции. Перекрывание генов в одном участке днк. Молекулярно-генетические подходы в исследовании тонкого строения генов.
- •Генетическая гетерогенность популяций. Методы изучения природных популяций. Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе.
- •1.Половые хромосомы. Наследование признаков, сцепленных с полом. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Наследование при нерасхождении половых хромосом.
- •2.Полимерная цепная реакция.Саузерн-блот и нозерн-блот анализы.
- •1)Понятие дозовой компенсации. Компенсация дозы генов при определении пола у дрозофилы.
- •2)Структурная организация генома эукариотов. Регуляторные элементы генома.
- •1. Генетический контроль и молекулярные механизмы репликации.
- •2. Понятие дозовой компенсации. Компенсация дозы генов при определении пола у млекопитающих.
- •Билет28
- •22 Билет
- •Определение группы сцепления мутаций d. Melanogaster: использование доминантных и рецессивных маркеров.
- •Мобильные элементы генома. Классификация и биологическая роль
- •3.Понятие о виде и популяции. Популяция как естественно-истори ческая структура. Понятие о частотах генов и генотипов в популяциях. Закон Харди-Вайнберга, возможности его применения.
- •30 Билет
- •1. Представление школы Моргана о строении и функции гена.
- •2. Политенные хромосомы дрозофилы как модельный объект генетических исследований.
- •3. Закон гомологических рядов в наследственной изменчивости (н.И. Вавилов).
- •33 Билет
- •1. Построение физических карт хромосом с помощью методов молекулярной биологии.
- •2. Рекомбинация: гомологический кроссинговер, сайт-специфическая рекомбинация, транспозиции. Генная конверсия.
- •1.Представление о плазмидах, эписомах и мобильных генетических элементах (инсерционные последовательности, транспозоны) прокариот.
- •3.Явление гетерозиса и его генетические механизмы.
- •1.Сайт-специфическая рекомбинация. Генетический контроль и механизмы процессов транспозиции.
- •2.Векторы эукариот.
- •3.Роль наследственности в формировании поведенческих признаков. Генетика поведения дрозофилы.
- •38 Билет
33 Билет
1. Неравный кроссинговер (unequal crossing-over, англ. crossing — перекресток, переход и over — над, свыше) - кроссинговер, в результате которого образуются сестринские кроссоверные хроматиды, различающиеся по количеству заключенного в них генетического материала. В основе неравного кроссинговера лежит неправильное спаривание дуплицированных сегментов рекомбинирующих хроматид (напр., в составе кластера генов рРНК), в результате которого в одной хроматиде остается 1 копия, а в другой - 3 копии данного сегмента. Митоти́ческий кроссинго́вер — тип генетической рекомбинации, который может проходить в соматических клетках при митотических делениях как у организмов, обладающих полом, так и бесполых организмов (например, некоторых одноклеточных грибов, у которых не известен половой процесс). В случае бесполых организмов митотическая рекомбинация является единственным ключом к пониманию сцепления генов, так как у таких организмов это единственный способ генетической рекомбинации. Кроме того, митотическая рекомбинация может привести к мозаичной экспрессии рецессивных признаков у гетерозиготной особи. Такая экспрессия имеет важное значение в онкогенезе, она также позволяет изучать летальные рецессивные мутации. Факторы, влияющие на кроссинговер На кроссинговер влияет множество факторов как генетической природы, так и внешней среды. Поэтому в реальном эксперименте о частоте кроссинговера можно говорить, имея в виду все те условия, в которых она была определена. Кроссинговер практически отсутствует между гетероморфными Х- и Y-хромосомами. Если бы он происходил, то хромосомный механизм определения пола постоянно разрушался бы. Блокирование кроссинговера между этими хромосомами связано не только с различием в их величине (оно наблюдается не всегда), но и обусловлено Y-специфичными нуклеотидными последовательностями. Обязательное условие синапса хромосом (или их участков) — гомология нуклеотидных последовательностей. Для абсолютного большинства высших эукариот характерна примерно одинаковая частота кроссинговера как у гомогаметного, так и гетерогаметного полов. Однако есть виды, у которых кроссинговер отсутствует у особей гетерогаметного пола, в то время как у особей гомогаметного пола он протекает нормально. Такая ситуация наблюдается у гетерогаметных самцов дрозофилы и самок шелкопряда. Существенно, что частота митотического кроссинговера у этих видов у самцов и самок практически одинакова, что указывает на различные элементы контроля отдельных этапов генетической рекомбинации в половых и соматических клетках. В гетерохроматических районах, в частности прицентромерных, частота кроссинговера снижена, и поэтому истинное расстояние между генами в этих участках может быть изменено. Обнаружены гены, выполняющие роль запирателей кроссинговера, но есть также гены, повышающие его частоту. Они иногда могут индуцировать заметное число кроссоверов у самцов дрозофилы. В качестве запирателей кроссинговера могут выступать также хромосомные перестройки, в частности инверсии. Они нарушают нормальную конъюгацию хромосом в зиготене. Обнаружено, что на частоту кроссинговера влияют возраст организма, а также экзогенные факторы: температура, радиация, концентрация солей, химические мутагены, лекарства, гормоны. При большинстве указанных воздействий частота кроссинговера повышается. В целом кроссинговер представляет собой один из регулярных генетических процессов, контролируемых многими генами как непосредственно, так и через физиологическое состояние мейотических или митотических клеток. Частота различных типов рекомбинаций (мейотический, митотический кроссинговер и сестринские, хроматидные обмены) может служить мерой действия мутагенов, канцерогенов, антибиотиков и др.
2. Экспрессия генов — это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт — РНК или белок. Некоторые этапы экспрессии генов могут регулироваться: это транскрипция, трансляция, сплайсинг РНК и стадия посттрансляционных модификаций белков. Регуляция экспрессии генов позволяет клеткам контролировать собственную структуру и функцию и является основой дифференцировки клеток, морфогенеза и адаптации. Экспрессия генов является субстратом для эволюционных изменений, так как контроль над временем, местом и количественными характеристиками экспрессии одного гена может иметь влияние на функции других генов в целом организме. Регуляция транскрипции — совокупность процессов в клетке, посредством которых осуществляется контроль за транскрипцией — синтезом РНК на матрице ДНК — одним из этапов экспрессии генов. Транскрипционная активность гена может контролироваться более чем одним механизмом. Эти механизмы различаются у прокариот и эукариот. Регуляция транскрипции у эукариот осуществляется на двух взаимосвязанных уровнях: 1. на уровне аппарата и факторов транскрипции; 2. на уровне структуры хроматина. Факторы транскрипции —это белки, обладающие способностью стимулировать или подавлять транскрипцию генов при связывании с регуляторными участками ДНК. Как правило, факторы транскрипции взаимодействуют с кофакторами — белками или белковыми комплексами, вносящими вклад в стимуляцию (коактиваторы) или подавление (корепрессоры) транскрипции, но не обладающими собственной ДНК- связывающей способностью. Регуляция транскрипции на уровне факторов осуществляется на стадии инициации или элонгации. Эукариотические факторы транскрипции реализуют механизм регуляции экспрессии генов комбинаторного типа. Молекулы факторов транскрипции обладают консервативными доменами, которые дают им возможность осуществлять высокоспецифические белок-белковые и белково-нуклеиновые взаимодействия. In vivo происходит объединение факторов транскрипции и других регуляторных белков в большие регуляторные комплексы. Каждое новое сочетание факторов придает комплексу уникальные регуляторные свойства, обеспечивая изменение специфичности его взаимодействия с регуляторными последовательностями ДНК и регуляторными белками аппарата транскрипции. Уникальна способность эукариот использовать для регуляции транскрипции генов изменения структуры хроматина. С помощью таких механизмов осуществляется репрессия и дерепрессия генов во время дифференцировки клеток, и поддерживается соответствующее функциональное состояние отдельных генов, их больших массивов и целых хромосом на протяжении всей жизни организма. Перестройки хроматина в окрестностях регуляторных участков генов происходят и в связи с более тонкой регуляцией их транскрипции. В процессе синтеза и после его завершения первичный транскрипт подвергается посттранскрипционным модификациям и процессингу. Таким образом, генетической информации, заключенной в конкретном гене, недостаточно для полноценной экспрессии, и чтобы ген правильно функционировал, требуется координированная работа дополнительных генов, многие из которых активны не вблизи регулируемых генов, а в других тканях, удаленных от клеток- мишеней. Для осуществления такой передачи регуляторных сигналов на большие расстояния в организме присутствуют специальные системы, осуществляющие генерацию, перенос и специфическое распознавание сигналов клетками. 3. Методы селекции растений и животных: скрещивание и искусственный отбор. Скрещивание разных сортов растений и пород животных основа повышения генетического разнообразия потомства. Виды скрещивания растений: перекрестное опыление и самоопыление. Самоопыление перекрестно- опыляемых растений способ получения гомозиготного по ряду признаков потомства. Перекрестное опыление способ увеличения разнообразия потомства. Типы скрещивания животных: Скрещивание — необходимое условие для осуществления комбинативной изменчивости. Оно позволяет сочетать в потомстве ценные признаки обоих родителей и избавляться от ненужных свойств. В зависимости от степени родства родителей, выделяют несколько типов скрещивания: родственное скрещивание; неродственное скрещивание: а) внутрипородное (внутрисортовое), б) отдаленная гибридизация. Родственное скрещивание — это скрещивание особей, состоящих в близком родстве: родители - дети, брат — сестра. Родственное скрещивание у животных обозначают термином инбридинг, в растениеводстве самоопыление растений -- инцухт. Однако часто термином инбридинг обозначают близкородственное скрещивание вообще. Длительный инбридинг сопровождается гомозиготизацией потомства, то есть все большее число генов присутствует в одной из возможных аллельных форм. Чем меньшее количество генов ответственно за развитие признака и чем дальше степень родства, тем медленнее наступает гомозиготность. Однако, следует иметь в виду, что абсолютной гомозиготности не наблюдается никогда, поскольку всегда возникают мутации. Путем применения инбридинга выводят чистые линии - гомозиготные формы одного сорта. Неродственное скрещивание (аутбридинг) — скрещивание неродственных особей, которые могут принадлежать к одной или разной породе или сорту, и даже к разным видам и родам. Если инбридинг приводит к фиксированию определенных признаков в ряду поколений, то за счет аутбридинга осуществляют объединение различных свойств в одном организме. Одним из важнейших следствий аутбридинга является гетерозиготизация, при которой большое число генов генофонда группы организмов присутствует в двух или более аллельных формах. Для сельского хозяйства ценен один из эффектов аутбридинга —гетерозис. Гетерозис —явление резкого увеличения жизненной силы у гибридов, полученных при скрещивании родителей двух чистых линий. Под жизненной силой при этом подразумевают плодовитость, выживаемость и ряд других свойств. Наиболее сильно гетерозис проявляется у гибридов первого поколения, после чего в ряду поколений достаточно быстро исчезает. Биологические механизмы гетерозиса еще не достаточно изучены. Выдвинуто несколько гипотез, однако ни одна из них не дает исчерпывающего объяснения этому явлению. Для усиления гетерозиса также используют метод двойной межлинейной гибридизации, при этом скрещивают гибридов, полученных от скрещивания чистых линий. Отдаленная гибридизация — скрещивание особей, относящихся к разным видам и родам. Её применение позволяет получать особей с уникальным сочетанием признаков, характерных для разных видов. Несмотря на то, что в природе существуют механизмы, препятствующие межвидовому скрещиванию, в некоторых случаях все-таки удается получать потомство (например, мул — гибрид от лошади и осла). Часто, однако, существенным недостатком таких гибридов является их стерильность, однако и это иногда может быть преодолено, в результате аллодиплоидизации.
Билет 34
