- •Предмет генетики. Место генетики среди биологических наук. Значение генетики для решения задач селекции, медицины, биотехнологии, экологии.
- •3.Дифференциальная активность генов в ходе индивидуального развития. Первичная дифференцировка цитоплазмы, действие генов в раннем эмбриогенезе, амплификация генов
- •1.История генетики в кз.
- •2.Кольцевая карта хромосом прокариот.Генетическая рекомбинация при трансформации.
- •3.Онтогенез как реализация наследственно детерминированной программы развития. Опыты по трансплантации ядер. Методы клонирования генетически идентичных организмов.
- •1)Митотический цикл и фазы митоза
- •2)Закономерности нехромосомного наследования .Методы изучения: реципрокные, возвратные и поглощающие скрещивания, метод трансплантации, биохимические методы.
- •9 Билет
- •1.Строение хромосомы
- •2.Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и селекции.
- •3.Генетика определения пола у человека и у дрозофилы.
- •13 Билет
- •1. Закономерности наследования, открытые г. Менделем. Представление г. Менделя о дискретной наследственности. Представление об аллелях и их взаимодействиях. Анализирующее скрещивание.
- •2. Классификация генных мутаций. Роль мобильных генетических элементов в возникновении генных мутаций и хромосомных перестроек.
- •3. Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
- •1.Закономерности наследования в ди- и полигибридных скрещиваниях. Статистический характер расщеплений.
- •2.Химический мутагенез. Особенности мутагенного действия химических агентов. Факторы, модифицирующие мутационный процесс. Антимутагены. Мутагены окружающей среды и методы их тестирования
- •3.Генетика соматических клеток. Химерные (аллофенные) животные.
- •Неаллельные взаимодействия: комплементарность, эпистаз, полимерия. Биохимические основы неаллельных взаимодействий.
- •Ген как единица функции. Перекрывание генов в одном участке днк. Молекулярно-генетические подходы в исследовании тонкого строения генов.
- •Генетическая гетерогенность популяций. Методы изучения природных популяций. Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе.
- •1.Половые хромосомы. Наследование признаков, сцепленных с полом. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Наследование при нерасхождении половых хромосом.
- •2.Полимерная цепная реакция.Саузерн-блот и нозерн-блот анализы.
- •1)Понятие дозовой компенсации. Компенсация дозы генов при определении пола у дрозофилы.
- •2)Структурная организация генома эукариотов. Регуляторные элементы генома.
- •1. Генетический контроль и молекулярные механизмы репликации.
- •2. Понятие дозовой компенсации. Компенсация дозы генов при определении пола у млекопитающих.
- •Билет28
- •22 Билет
- •Определение группы сцепления мутаций d. Melanogaster: использование доминантных и рецессивных маркеров.
- •Мобильные элементы генома. Классификация и биологическая роль
- •3.Понятие о виде и популяции. Популяция как естественно-истори ческая структура. Понятие о частотах генов и генотипов в популяциях. Закон Харди-Вайнберга, возможности его применения.
- •30 Билет
- •1. Представление школы Моргана о строении и функции гена.
- •2. Политенные хромосомы дрозофилы как модельный объект генетических исследований.
- •3. Закон гомологических рядов в наследственной изменчивости (н.И. Вавилов).
- •33 Билет
- •1. Построение физических карт хромосом с помощью методов молекулярной биологии.
- •2. Рекомбинация: гомологический кроссинговер, сайт-специфическая рекомбинация, транспозиции. Генная конверсия.
- •1.Представление о плазмидах, эписомах и мобильных генетических элементах (инсерционные последовательности, транспозоны) прокариот.
- •3.Явление гетерозиса и его генетические механизмы.
- •1.Сайт-специфическая рекомбинация. Генетический контроль и механизмы процессов транспозиции.
- •2.Векторы эукариот.
- •3.Роль наследственности в формировании поведенческих признаков. Генетика поведения дрозофилы.
- •38 Билет
2. Политенные хромосомы дрозофилы как модельный объект генетических исследований.
Не удивительно, что в течение многих лет (примерно до 40-х гг.) дрозофила была основным объектом в теоретических исследованиях и в учебном процессе по генетике. Именно исследования на дрозофиле привели к разработке хромосомной теории наследственности, генетической теории определения пола, выяснению механизмов возникновения мутаций и разработке методов их количественной оценки, а также методов цитологического картирования на политенных хромосомах. На дрозофиле изучали действие радиации и других мутагенных факторов, проведены исследования в области популяционной и эволюционной генетики. Число исследований на дрозофиле вновь резко возросло в последние 10-20 лет в связи с разработкой новых подходов и использованием методов молекулярной биологии, биохимии и генетической инженерии. Это позволило проанализировать содержание и состав ДНК и РНК в метафазных и политенных хромосомах, структуру некоторых генов у дрозофилы. Политенные хромосомы используют для изучения процессов транскрипции и репликации ДНК, а также в филогенетических исследованиях разных видов Diptera. Применение методов фракционирования белков позволяет изучать генетику изоферментов у дрозофилы, на основе которой строятся биохимические карты, изучается регуляция активности генов, контролирующих изоферменты, а также генная активность в онтогенезе. Особый раздел работы на дрозофиле - культивирование эмбриональных клеток и имагинальных дисков - способствует решению проблем генетики соматических клеток и генетики развития. Среди замечательных заслуг дрозофилы следует назвать открытие мобильных генетических элементов (МГЭ) и супермобильных локусов. Можно сказать, что по полноте информации о структуре генома среди высших эукариот дрозофила стоит на первом месте.
3. Закон гомологических рядов в наследственной изменчивости (н.И. Вавилов).
Закон гомологических рядов в наследственной изменчивости сводится к следующему: близкие виды благодаря большому сходству их генотипов (почти идентичные наборы генов) обладают сходной потенциальной наследственной изменчивостью (сходные мутации одинаковых генов); по мере эволюционно-филогенетического удаления изучаемых групп (таксонов), в связи с появляющимися генотипическими различиями параллелизм наследственной изменчивости становится менее полным. Следовательно, в основе параллелизмов в наследственной изменчивости лежат мутации гомологичных генов и участков генотипов у представителей различных таксонов, то есть действительно гомологичная наследственная изменчивость.
Значение наследственной изменчивости организмов для селекционного процесса и эволюции.
В эволюционной теории Дарвина предпосылкой эволюции является наследственная изменчивость, а движущими силами эволюции — борьба за существование и естественный отбор. При создании эволюционной теории Ч. Дарвин многократно обращается к результатам селекционной практики. Он показал, что в основе многообразия сортов и пород лежит изменчивость. Изменчивость — процесс возникновения отличий у потомков по сравнению с предками, которые обусловливают многообразие особей в пределах сорта, породы. Дарвин считает, что причинами изменчивости являются воздействие на организмы факторов внешней среды (прямое и косвенное), а также природа самих организмов (так как каждый из них специфически реагирует на воздействие внешней среды). Изменчивость служит основой образования новых признаков в строении и функциях организмов, а наследственность закрепляет эти признаки Дарвин, анализируя формы изменчивости, выделил среди них три: определенную, неопределенную и коррелятивную.
Определенная, или групповая, изменчивость — это изменчивость, которая возникает под влиянием какого-либо фактора среды, действующего одинаково на все особи сорта или породы и изменяющегося в определенном направлении. Примерами такой изменчивости могут служить увеличение массы тела у особей животных при хорошем кормлении, изменение волосяного покрова под влиянием климата и т. д. Определенная изменчивость является массовой, охватывает все поколение и выражается у каждой особи сходным образом. Она не наследственна, т. е. у потомков измененной группы при других условиях приобретенные родителями признаки не наследуются.
Неопределенная, или индивидуальная, изменчивость проявляется специфично у каждой особи, т.е. единична, индивидуальна по своему характеру. С ней связаны отличия у особей одного и того же сорта или породы, находящихся в сходных условиях. Данная форма изменчивости неопределенна, т. е. признак в одних и тех же условиях может изменяться в разных направлениях. Например, у одного сорта растений появляются экземпляры с разной окраской цветков, разной интенсивностью окраски лепестков и т. п. Причина такого явления Дарвину была неизвестна. Неопределенная изменчивость имеет наследственный характер, т. е. устойчиво передается потомству. В этом заключается ее важное значение для эволюции.
При коррелятивной, или соотносительной, изменчивости изменение в каком-либо одном органе является причиной изменений в других органах. Например, у собак с плохо развитым шерстным покровом обычно недоразвиты зубы, у голубей с оперенными ногами имеются перепонки между пальцами, у голубей с длинным клювом обычно длинные ноги, белые кошки с голубыми глазами обычно глухи и т. д. Из факторов коррелятивной изменчивости Дарвин делает важный вывод: человек, отбирая какую-либо особенность строения, почти «наверное будет неумышленно изменять и другие части организма на основании таинственных законов корреляции».
*Билет 31
1. Генетическая карта хромосомы - схема взаимного расположения генов, находящихся в одной группе сцепления. Для сотавления генетических карт хромосом необходимо выявление множество мутантных генов и проведения многочисленных скрещиваний. Расстояние между генами на генетической карте хромосом определяют по чистоте кроссинговера между ними. Единицей расстояния генетической карте хромосом мейотически делящихся клеток является морганида, соотвеьсвующая одному проценту кроссинговера. Для построения генетической карты хромосомы эукариот (наиболее подробная гентические карты сотавленны для дрозофилы, у которой изучено более тысячи мутантных генов, а также для кукурузы, имеющей в десяти группых сцепления с выше четырехсот генов) используют меотический и митотический кроссинговер. Сравнение генетических карт хромосом, построенных разными методами у одного и того же вида, выявляет одинаковый порядок расположение генов, хотя расстоуние между конкретными генами на мейотических и митотических генетических картах хромосом могут различаться. В норме генетические карты хромосом у эукариот линейные, однако, например, при построении генетических карт хромосом у гетерозигот по транслакации получается генетическая карта хромосом в виде креста. Это указывает на то, что форма карт отражает характер конъюгации хромосом. У прокариот и вирусов генетические карты хромосом также строят с помощью рекомбинации. При картировании генов у бактерий с помощью конъюгации получается кольцевая генетическая карта хромосомы. Значение генетических карт позволяет планировать работу по получению организмов с определенными сочетаниями признаков, что используется в генетических экспериментах селекционной практике. Сравнение генетических карт хромосом разных видов способствует эволюциоонному процессу. На основе же генетических карт проводят генетический анализ.
Цитологическая карта хромосомы представляет собой фотографию или точный рисунок хромосомы, на котором отмечается последовательность расположения генов. Ее строят на основе сопоставления результатов анализирующего скрещивания и хромосомных перестроек. Например, если хромосома с доминантными генами будет последовательно терять отдельные локусы (при воздействии на нее мутагенов), то в гетерозиготе начнут проявляться рецессивные признаки. Порядок проявления признаков будет указывать на последовательность расположения генов.
Соматический (митотический) кроссинговер.
В соматических клетках иногда происходят обмены между хроматидами гомологичных хромосом, в результате которых наблюдается комбинативная изменчивость, подобная той, которая регулярно генерируется мейозом. Нередко, особенно у дрозофилы и низших эукариот, гомологичные хромосомы синаптируют в митозе. Одна из аутосомно-рецессивных мутаций человека, в гомозиготном состоянии приводящая к тяжелому заболеванию, известному под названием синдром Блюма, сопровождается цитологической картиной, напоминающей синапсис гомологов и даже образование хиазм. Доказательство митотического кроссинговера было получено на дрозофиле при анализе изменчивости признаков, определяемых генами у (yellow – желтое тело) и sn (singed – опаленные щетинки), которые находятся в Х-хромосоме. Самка с генотипом ysn+ / y+sn гетерозиготна по генам у и sn, и поэтому в отсутствие митотического кроссинговера ее фенотип будет нормальным. Однако если кроссинговер произошел на стадии четырех хроматид между хроматидами разных гомологов (но не между сестринскими хроматидами), причем место обмена находится между геном sn и центромерой, то образуются клетки с генотипами y sn+ / y+ sn+ и y+sn/y+n. В этом случае на сером теле мухи с нормальными щетинками появятся близнецовые мозаичные пятна, одно из которых будет желтого цвета с нормальными щетинками, а другое – серого цвета с опаленными щетинками. Для этого необходимо, чтобы после кроссинговера обе хромосомы (бывшие хроматиды каждого из гомологов) y+ sn отошли к одному полюсу клетки, а хромосомы y sn+ – к другому. Потомки дочерних клеток, размножившись на стадии куколки, и приведут к появлению мозаичных пятен. Таким образом, мозаичные пятна образуются тогда, когда рядом расположены две группы (точнее, два клона) клеток, фенотипически отличающиеся друг от друга и от клеток остальных тканей данной особи.
*****
2. Изучение регуляции генной активности у прокариот привело французских микробиологов Ф. Жакоба и Ж. Моно к созданию (1961) оперонной модели регуляции транскрипции. Оперон — это тесно связанная последовательность структурных генов, определяющих синтез группы белков, которые участвуют в одной цепи биохимических преобразований. Например, это могут быть гены, которые детерминируют синтез ферментов, участвующих в метаболизме какого-либо вещества или в синтезе какого-то компонента клетки. Оперонная модель регуляции экспрессии генов предполагает наличие единой системы регуляции у таких объединенных в один оперон структурных генов, имеющих общий промотор и оператор.
Особенностью прокариот является транскрибирование мРНК со всех структурных генов оперона в виде одного полицистронного транскрипта, с которого в дальнейшем синтезируются отдельные пептиды.
Примером участия генетических и негенетических факторов в регуляции экспрессии генов у прокариот может служить функционирование лактозного оперона у кишечной палочки Е. colt (рис. 3.86). При отсутствии в среде, на которой выращиваются бактерии, сахара лактозы активный белок-репрессор, синтезируемый геном-регулятором (I), взаимодействует с оператором (О), препятствуя соединению РНК-полимеразы с промотором (Р) и транскрипции структурных генов Z, Y, А. Появление в среде лактозы инактивирует репрессор, он не соединяется с оператором, РНК-полимераза взаимодействует с промотором и осуществляет транскрипцию полицистронной мРНК. Последняя обеспечивает синтез сразу всех ферментов, участвующих в метаболизме лактозы. Уменьшение содержания лактозы в результате ее ферментативного расщепления приводит к восстановлению способности репрессора соединяться с оператором и прекращению транскрипции генов Z, Y, А. Таким образом, регуляция экспрессии генов, организованных у прокариот в опероны, является координированной. Синтез полицистронной мРНК обеспечивает одинаковый уровень синтеза всех ферментов, участвующих в биохимическом процесс
*****
3. Генетика как теоретическая основа селекции. Значение частной и сравнительной генетики растений, животных и микроорганизмов в селекции. Селекция как наука и как технология. Предмет и методы исследования. Учение об исходном материале в селекции. Центры происхождения культурных растений по Н.И. Вавилову. Понятие о породе, сорте, штамме.
Источники изменчивости для отбора. Комбинативная изменчивость. Принципы подбора пар для скрещивания. Мутационная изменчивость, использование индуцированной мутационной изменчивости в селекции растений и микроорганизмов (продуцентов антибиотиков, витаминов, аминокислот). Роль экспериментальной полиплоидии в повышении продуктивности сельскохозяйственных растений.
Системы скрещивания в селекции растений и животных. Инбридинг. Линейная селекция. Аутбридинг. Отдаленная гибридизация. Явление гетерозиса. Генетические механизмы гетерозиса. Использование простых и двойных межлинейных гибридов в растениеводстве и животноводстве . Производство гибридных семян на основе цитоплазматической мужской стерильности. Наследуемость. Коэффициент наследуемости и его использование выборе методов селекции.
Методы отбора. Индивидуальный и массовый отборы и их значение. Индивидуальный отбор как основа селекции. Значение условий внешней среды для эффективности отбора. Роль наследственности, изменчивости и отбора в создании пород животных и сортов растений. Перспективы развития селекции в связи с успехами молекулярной генетики, цитогенетики, биохимии, микробиологии.
Коэффициент наследуемости можно использовать для прогнозирования эффекта селекции по селекционному признаку у будущего потомства при сохранении тех же условий внешней среды.
Для установления эффекта отбора R находят селекционный дифференциал S — отклонение средней величины пчелиных семей отобранной на племя χ2 группы от среднепасечных показателей χ1.
Отклонение родителей наследуется потомством не полностью, а в зависимости от величины h2. Поэтому R=Sh2.
Так, средняя величина максимальной яйценоскости по пасеке составляла 956 яиц в сутки (x1 = 956). Максимальная яйценоскость отобранных в племенное ядро маток составила 1680 яиц (х2 = 1680). Эффект отбора в этом случае при h2 = 0,3 составит = (1680—956)0,3 = 217.
Максимальная яйценоскость дочерей должна составить не менее 1173 яйца в сутки (956+277).
Фактическая интенсивность отбора по генотипу при оценке его по фенотипу обратно пропорциональна величине h2. При очень высокой интенсивности отбора по фенотипу уровень отбора по генотипу будет выше даже при низких значениях h2.
Сведения о степени наследуемости признаков дают возможность судить о шансах фенотипического отбора и корректировать селекционный процесс.
Коэффициенты повторяемости позволяют судить об объективности оценки селекционных объектов в разном возрасте: при высокой повторяемости признака можно обойтись оценкой по разовым учетам и в раннем возрасте. Таким образом, оценка коэффициентов повторяемости может способствовать ускорению селекционного процесса.
Билет 32.
После определения группы сцепления, к которой принадлежит ген, переходят к следующему этапу анализа и устанавливают место гена в группе сцепления. Локализация гена осуществляется путем учета результатов кроссинговера. Иногда для локализации гена привлекают и цитологические методы. Для нахождения местоположения локуса гена в хромосоме необходимо производить скрещивание особей таким путем, чтобы место определяемого гена при кроссинговере было третьей точкой, как это было нами уже изложено при объяснении двойного кроссинговера. Маркировка трех локусов в хромосоме, или, как иногда называют, трех точек, совершенно необходима для определения порядка линейного расположения генов и расстояния между ними. В рассмотренном ранее примере с дрозофилой процент кроссинговера между генами у и w равен 1,2, а между генами w и bi — 3,5. Но по этим показателям мы еще не можем сказать, где находится ген у, слева или справа от гена w; нельзя ничего сказать и о положении гена w по отношению к bi. И только определив процент перекреста между третьей парой генов у и bi в данном случае (4,7%), можно прийти к заключению, что ген w должен находиться между Генами у и bi. Таким образом, с помощью кроссинговера можно определить группу сцепления и место гена в ней. При этом внутри самого гена перекрест обычно не обнаруживается, в силу этого некоторые генетики склонны были определять ген как единицу перекреста, а точнее — как предельную единицу, не разделяемую далее перекрестом. Поскольку ген занимает определенное местâ Õ- группе сцепления, то это позволяет генетикам изучать топографию расположения генов в каждой хромосоме и представить это в виде генетических карт хромосом.
2.эукариот наряду с регуляторными процессами, влияющими на функционирование отдельной клетки, существуют системы регуляции организма как целого. Гормоны образуются в специализированных клетках желез внутренней секреции и с кровью разносятся по всему телу. Но регулируют они процессы синтеза РНК и белков лишь в так называемых клетках-мишенях. Гормоны связываются с белками-рецепторами, расположенными в мембранах таких клеток, и включают системы изменения структуры клеточных белков. Те в свою очередь могут влиять как на синтез белков на рибосомах, так и на транскрипцию определенных генов. Каждый гормон через систему посредников активирует свою группу генов. Так, например, адреналин включает синтез ферментов, расщепляющих гликоген мышц до глюкозы, а другой гормон – инсулин влияет на образование гликогена из глюкозы в печени. В отличие от прокариот, у которых процессы транскрипции и трансляции не разобщены во времени и в пространстве, у эукариот синтез РНК происходит в ядре клетки, а синтез белков – в цитоплазме. Образующиеся в ядре информационные РНК подвергаются там целому ряду изменений под действием ферментов и в комплексе с различными белками проходят через ядерную оболочку. Разные иРНК транслируются в разное время после их образования. Это зависит от того, с какими белками они связаны в цитоплазме. В отсутствие гормонального сигнала некоторые иРНК остаются нетранслированными долгое время. Разнообразие форм и функций клеток разных организмов зависит от сложного взаимодействия различных генов между собой и с многочисленными веществами, попадающими в клетку извне или образующимися в ней. Познание регуляторных механизмов транскрипции и трансляции необходимо для управления процессами реализации генетической информации. С помощью методов молекулярной биологии было исследовано регуляторное действие гистонов и негистоновых хромосомных белков. Как выяснилось, гистоны, особенно гистон H1, оказывают тормозящее действие на ДНК-зависимый синтез РНК. Негистоновым хромосомным белкам тоже приписывают специфические регуляторные функции . Эти белки снимают блокирующее действие гистонов. На их важную роль указывают, помимо прочего, их большое многообразие, неодинаковое содержание их в хроматине различных тканей и на различных стадиях развития, а также результаты экспериментов по реконструкции хроматина. Однако эти данные спорны, так что регуляторное значение гистонов и негистоновых белков остается неясным. У человека важное значение имеет действие половых гормонов. Развитие первичных мужских половых признаков зависит от образования H-Y-антигена , ген которого, вероятно, находится в половой хромосоме. Стероидные гормоны , вырабатываемые гонадами, транспортируются к клеткам-мишеням, связываются имеющимися там аллостерическими белками- рецепторами , изменяют их конформацию и попадают в виде комплекса гормон-рецептор в клеточное ядро . Происходящая после этого активация транскрипции определенных генов, обусловлена воздействием этого комплекса.
Человек как объект генетического исследования Раздел генетики, изучающий наследственность и изменчивость у человека, называется антропогенетикой или генетикой человека. Генетика человека - это наука о наследственно обусловленных различиях между людьми. Из генетики человека выделяется медицинская генетика, исследующая механизмы развития наследственных болезней, возможности их лечения и профилактики. В настоящее время человек хорошо изучен морфологически, физиологически, биохимически, что способствует рассмотрению его генетических особенностей. Изучение генетики человека связано с биологическими и социально-этическими особенностями. Биологические особенности: позднее половое созревание, малочисленное потомство у одной пары родителей, в основном моноплодная беременность (исключение - близнецы); большой срок беременности, медленная смена поколений (20 - 25 лет), особенности кариотипа (большое число хромосом и др.), фенотипический полиморфизм. Социально-этические особенности: невозможность направленных скрещиваний в интересах исследователя, отсутствие точной регистрации наследственных признаков (проводится не всегда и не везде), невозможность создания одинаковых условий жизни для всех людей. У человека есть и преимущества перед другими генетическими объектами: способность воспринимать информацию и абстрактно мыслить; значительное число и разнообразие мутаций; высокая численность популяций, доступных для изучения; возможность регистрации наследственных признаков в течение длительного времени; использование гибридизации соматических клеток для генетического анализа. II. Методы изучения генетики человека Генетика человека имеет как основные специфические методы исследования: генеалогический, близнецовый, цитогенетический, популяционно-статистический, онтогенетический, дерматоглифики, моделирования наследственных болезней и гибридизации соматических клеток; методы молекулярной генетики; так и дополнительные, применяемые совместно с основными (биохимический, микробиологический, иммунологический и др.).
3.Все генетические законы и закономерности универсальны и приложимы к человеку. Однако изучение генетики человека имеет ряд особенностей. Во-первых, нельзя использовать гибридологический метод, так как экспериментальное скрещивание людей невозможно. Во-вторых, у человека медленная смена поколений, и пронаблюдать характер наследования признака сложно. В-третьих, у человека очень малое число потомков в одной семье, что не дает статистически достоверного результата. Кроме того, в отличие от классических генетических объектов у человека большое число хромосом и много групп сцепления. Поэтому для изучения генетики человека используются специфические методы, а характер наследования того или иного признака определяется на больших человеческих популяциях. Основные методы изучения генетики человека: •генеалогический; •близнецовый; •цитогенетический метод; •биохимический метод; •популяционно-статистический метод; •молекулярно-генетические методы. Изучение генетики человека позволяет диагностировать, лечить и предсказывать вероятность генетической аномалии. В настоящее время изучен характер наследования около 2000 признаков. Для профилактики и прогнозирования вероятности генетического заболевания созданы медико-генетические консультации. Биохимический методоснован на изучении характера биохимических реакций в организме, обмена веществ для установления носительства аномального гена или уточнения диагноза. Заболевания, в основе которых лежит нарушение обмена веществ, составляют значительную часть генной наследственной патологии. К ним относятся сахарный диабет, фенилкетонурия (нарушение обмена фенилаланина), галактоземия (нарушение усвоения молочного сахара) и другие. Этот метод позволяет установить болезнь на ранней стадии и лечить ее. Молекулярно-генетические методы. В последние годы уровень развития современной генетики позволяет широко использовать молекулярные методы для изучения молекулярных основ наследственности и изменчивости организмов, химической и физико-химической структуры генетического материала, его функций.
