- •Предмет генетики. Место генетики среди биологических наук. Значение генетики для решения задач селекции, медицины, биотехнологии, экологии.
- •3.Дифференциальная активность генов в ходе индивидуального развития. Первичная дифференцировка цитоплазмы, действие генов в раннем эмбриогенезе, амплификация генов
- •1.История генетики в кз.
- •2.Кольцевая карта хромосом прокариот.Генетическая рекомбинация при трансформации.
- •3.Онтогенез как реализация наследственно детерминированной программы развития. Опыты по трансплантации ядер. Методы клонирования генетически идентичных организмов.
- •1)Митотический цикл и фазы митоза
- •2)Закономерности нехромосомного наследования .Методы изучения: реципрокные, возвратные и поглощающие скрещивания, метод трансплантации, биохимические методы.
- •9 Билет
- •1.Строение хромосомы
- •2.Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и селекции.
- •3.Генетика определения пола у человека и у дрозофилы.
- •13 Билет
- •1. Закономерности наследования, открытые г. Менделем. Представление г. Менделя о дискретной наследственности. Представление об аллелях и их взаимодействиях. Анализирующее скрещивание.
- •2. Классификация генных мутаций. Роль мобильных генетических элементов в возникновении генных мутаций и хромосомных перестроек.
- •3. Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
- •1.Закономерности наследования в ди- и полигибридных скрещиваниях. Статистический характер расщеплений.
- •2.Химический мутагенез. Особенности мутагенного действия химических агентов. Факторы, модифицирующие мутационный процесс. Антимутагены. Мутагены окружающей среды и методы их тестирования
- •3.Генетика соматических клеток. Химерные (аллофенные) животные.
- •Неаллельные взаимодействия: комплементарность, эпистаз, полимерия. Биохимические основы неаллельных взаимодействий.
- •Ген как единица функции. Перекрывание генов в одном участке днк. Молекулярно-генетические подходы в исследовании тонкого строения генов.
- •Генетическая гетерогенность популяций. Методы изучения природных популяций. Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе.
- •1.Половые хромосомы. Наследование признаков, сцепленных с полом. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Наследование при нерасхождении половых хромосом.
- •2.Полимерная цепная реакция.Саузерн-блот и нозерн-блот анализы.
- •1)Понятие дозовой компенсации. Компенсация дозы генов при определении пола у дрозофилы.
- •2)Структурная организация генома эукариотов. Регуляторные элементы генома.
- •1. Генетический контроль и молекулярные механизмы репликации.
- •2. Понятие дозовой компенсации. Компенсация дозы генов при определении пола у млекопитающих.
- •Билет28
- •22 Билет
- •Определение группы сцепления мутаций d. Melanogaster: использование доминантных и рецессивных маркеров.
- •Мобильные элементы генома. Классификация и биологическая роль
- •3.Понятие о виде и популяции. Популяция как естественно-истори ческая структура. Понятие о частотах генов и генотипов в популяциях. Закон Харди-Вайнберга, возможности его применения.
- •30 Билет
- •1. Представление школы Моргана о строении и функции гена.
- •2. Политенные хромосомы дрозофилы как модельный объект генетических исследований.
- •3. Закон гомологических рядов в наследственной изменчивости (н.И. Вавилов).
- •33 Билет
- •1. Построение физических карт хромосом с помощью методов молекулярной биологии.
- •2. Рекомбинация: гомологический кроссинговер, сайт-специфическая рекомбинация, транспозиции. Генная конверсия.
- •1.Представление о плазмидах, эписомах и мобильных генетических элементах (инсерционные последовательности, транспозоны) прокариот.
- •3.Явление гетерозиса и его генетические механизмы.
- •1.Сайт-специфическая рекомбинация. Генетический контроль и механизмы процессов транспозиции.
- •2.Векторы эукариот.
- •3.Роль наследственности в формировании поведенческих признаков. Генетика поведения дрозофилы.
- •38 Билет
1. Генетический контроль и молекулярные механизмы репликации.
Для передачи дочерним клеткам генетической информации в процессе репликации ДНК (DNA) должна быть создана копия генома. Репликация ДНК осуществляется ДНК-зависимыми ДНК-полимеразами. Эти ферменты используют в качестве шаблона одну из цепей двойной спирали ДНК, так называемую матрицу. На матрице, начиная с короткой стартовой последовательности (праймера), ферменты синтезируют комплементарную цепь и воспроизводят в итоге исходную двухтяжевую ДНК. Субстратами ДНК-полимераз являются четыре дезоксирибонуклеотидтрифосфата: аденозин-, гуанозин-, тимидин- и цитозинтрифосфаты. При каждом шаге синтеза ДНК происходит спаривание нуклеотида с соответствующим азотистым основанием матричной цепи. Затем α-фосфатная группа связанного нуклеотида подвергается нуклеофильной атаке со стороны 3'-ОН-группы предыдущего нуклеотида. За этим следует удаление дифосфата и образование новой фосфодиэфирной связи. Эти этапы повторяются снова и снова по мере движения ДНК-полимеразы от одного основания к следующему вдоль матрицы. В соответствии с этим механизмом матричная цепь ДНК считывается в направлении 3'→5'.
В большинстве клеток имеется несколько ДНК-полимераз. Наряду с ферментами, которые осуществляют собственно репликацию, существуют полимеразы, которые включены в процессы репарации ДНК (см. с. 252) или реплицируют митохондриальную ДНК эукариот. Большинство ДНК-полимераз построены из множества субъединиц, роль которых до конца не выяснена.
Расплетание нитей молекулы ДНК происходит с помощью особого белка – геликазы. Оно идет против витков спирали и совершается с огромной скоростью. При расплетании возникает суперспирализация и вращение ДНК, которое снимается группой ферментов, называемых топоизомеразами.
Топоизомераза I – вносит временный одноцепочечный разрыв перед репликативной вилкой, что позволяет спирали ДНК вращаться вокруг своей оси. После снятия напряжения разорванная цепь восстанавливается.
Топоизомераза II – создает временный двуцепочечный разрыв, удерживая вместе оторванные друг от друга концы цепей. Присутствие этого фермента позволяет распутывать сложные переплетения и узлы.
Затем на релаксированный участок родительской молекулы ДНК, с которого начинается репликация и который называется точной начала (или ориджином) репликации (ori C) садятся инициаторные белки.
Синтез цепи ДНК всегда идет в направлении 5’→ 3’. Из-за того, что в родительской молекуле ДНК цепи антипараллельны, на одной из родительских цепей новая цепь синтезируется непрерывно в направлении 5’→ 3’, что совпадает с движением репликативной вилки. Это лидирующая (или ведущая) цепь. Другая растет за счет синтеза коротких фрагментов также от 5’к 3’, но они синтезируются в обратном направлении и носят название фрагментов Оказаки.
На ДНК- матрице ДНК – праймаза синтезирует короткую РНК – затравку (праймер). Затем РНК – праймеры удлиняются действием ДНК – полимеразы III. На матрице отстающей цепи собираются SSB – белки, удерживая цепь в выпрямленном состоянии, затем синтезируются РНК – праймеры, которые удлиняются действием ДНК – полимеразы III, которая при этом вытесняет SSB – белки по мере синтеза нового фрагмента Оказаки.
Фрагметны Оказаки сшиваются благодаря действию двух ферментов: ДНК–полимеразы I, продолжающей синтез в направлении 5’→ 3’, одновременно удаляя РНК – праймер, и ДНК – лигазы, достраивающей одноцепочечную брешь.
Репликация осуществляются дискретно. Участок ДНК, в котором происходит индивидуальный акт репликации, называется репликоном. Репликон содержит все регуляторные элементы, необходимые для репликации: ориджин и может иметь терминатор. Геном прокариот составляет единственный репликон.
Для терминации необходим продукт гена tus, который опознает последовательность терминации, связывается с ней и предотвращает дальнейшее продвижение вилки репликации.
