- •Предмет генетики. Место генетики среди биологических наук. Значение генетики для решения задач селекции, медицины, биотехнологии, экологии.
- •3.Дифференциальная активность генов в ходе индивидуального развития. Первичная дифференцировка цитоплазмы, действие генов в раннем эмбриогенезе, амплификация генов
- •1.История генетики в кз.
- •2.Кольцевая карта хромосом прокариот.Генетическая рекомбинация при трансформации.
- •3.Онтогенез как реализация наследственно детерминированной программы развития. Опыты по трансплантации ядер. Методы клонирования генетически идентичных организмов.
- •1)Митотический цикл и фазы митоза
- •2)Закономерности нехромосомного наследования .Методы изучения: реципрокные, возвратные и поглощающие скрещивания, метод трансплантации, биохимические методы.
- •9 Билет
- •1.Строение хромосомы
- •2.Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и селекции.
- •3.Генетика определения пола у человека и у дрозофилы.
- •13 Билет
- •1. Закономерности наследования, открытые г. Менделем. Представление г. Менделя о дискретной наследственности. Представление об аллелях и их взаимодействиях. Анализирующее скрещивание.
- •2. Классификация генных мутаций. Роль мобильных генетических элементов в возникновении генных мутаций и хромосомных перестроек.
- •3. Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
- •1.Закономерности наследования в ди- и полигибридных скрещиваниях. Статистический характер расщеплений.
- •2.Химический мутагенез. Особенности мутагенного действия химических агентов. Факторы, модифицирующие мутационный процесс. Антимутагены. Мутагены окружающей среды и методы их тестирования
- •3.Генетика соматических клеток. Химерные (аллофенные) животные.
- •Неаллельные взаимодействия: комплементарность, эпистаз, полимерия. Биохимические основы неаллельных взаимодействий.
- •Ген как единица функции. Перекрывание генов в одном участке днк. Молекулярно-генетические подходы в исследовании тонкого строения генов.
- •Генетическая гетерогенность популяций. Методы изучения природных популяций. Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе.
- •1.Половые хромосомы. Наследование признаков, сцепленных с полом. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Наследование при нерасхождении половых хромосом.
- •2.Полимерная цепная реакция.Саузерн-блот и нозерн-блот анализы.
- •1)Понятие дозовой компенсации. Компенсация дозы генов при определении пола у дрозофилы.
- •2)Структурная организация генома эукариотов. Регуляторные элементы генома.
- •1. Генетический контроль и молекулярные механизмы репликации.
- •2. Понятие дозовой компенсации. Компенсация дозы генов при определении пола у млекопитающих.
- •Билет28
- •22 Билет
- •Определение группы сцепления мутаций d. Melanogaster: использование доминантных и рецессивных маркеров.
- •Мобильные элементы генома. Классификация и биологическая роль
- •3.Понятие о виде и популяции. Популяция как естественно-истори ческая структура. Понятие о частотах генов и генотипов в популяциях. Закон Харди-Вайнберга, возможности его применения.
- •30 Билет
- •1. Представление школы Моргана о строении и функции гена.
- •2. Политенные хромосомы дрозофилы как модельный объект генетических исследований.
- •3. Закон гомологических рядов в наследственной изменчивости (н.И. Вавилов).
- •33 Билет
- •1. Построение физических карт хромосом с помощью методов молекулярной биологии.
- •2. Рекомбинация: гомологический кроссинговер, сайт-специфическая рекомбинация, транспозиции. Генная конверсия.
- •1.Представление о плазмидах, эписомах и мобильных генетических элементах (инсерционные последовательности, транспозоны) прокариот.
- •3.Явление гетерозиса и его генетические механизмы.
- •1.Сайт-специфическая рекомбинация. Генетический контроль и механизмы процессов транспозиции.
- •2.Векторы эукариот.
- •3.Роль наследственности в формировании поведенческих признаков. Генетика поведения дрозофилы.
- •38 Билет
3.Генетика соматических клеток. Химерные (аллофенные) животные.
ГЕНЕТИКА СОМАТИЧЕСКИХ КЛЕТОК — область генетики, изучающая закономерности наследственности и изменчивости элементарной структурной и функциональной единицы многоклеточного организма — соматической клетки. Генетический анализ (см.) невозможен без изучения потомства индивидуальных клеток. В Г. с. к. эта задача решается путем клонирования клеточных культур — выращивания на твердом субстрате клона (генетически однородного потомства отдельной клетки) в виде клеточной колонии. Успех в культивировании изолированных клеток человека, особенно в клонировании, зависит от создания адекватных условий для их размножения, прежде всего от удовлетворения специфических питательных потребностей клеток. Эта проблема окончательно не решена; поиски ведутся по пути создания полностью синтетических питательных сред, учитывающих специфические потребности дифференцированных клеток разных тканей. Необходимое условие проведения генетического анализа на соматических клетках — маркирование клеток по признакам, контролируемым индивидуальными генами. Разработка этой проблемы пока далека от завершения. Она находится в полной зависимости от прогресса в биохимии соматических клеток и создания методов селекции мутантов.
Билет № 18
Если гены, отвечающие за проявление двух не альтернативных признаков, находятся в негомологичных хромосомах, то при мейозе они попадут в гаметы независимо друг от друга. Поэтому при скрещивании двух дигетерозигот расщепление по генотипу:
1ААВВ :2ААВв :1ААвв :2АаВВ :4АаВв :2Аавв :1ааВв :2ааВв :1аавв является результатом двух независимых расщеплений 1АА:2Аа:1аа и 1ВВ:2Вв:1вв. Математически его можно выразить виде произведения (1АА:2Аа:1аа) и (1ВВ:2Вв:1вв) или (1:2:1)2 Такая запись показывает, что среди особей с генотипом АА одна часть несет гены ВВ, две части гены Вв. Одна часть – гены вв. Аналогичные соотношения особей по набору генов будут для генотипов Аа и аа.
Если особи анализируются по нескольким признакам, то общая формула расщепления при скрещивании полностью гетерозиготных особей будет (1:2:1) n, где n – число пар альтернативных признаков. Максимальное значение n равно числу пар гомологичных хромосом. Аналогично обстоит дело с расщеплением по фенотипу. В основе также лежит моногибридное расщепление 3: 1. При скрещивании двух дигетерозиготных организмов для независимого расщепления 3: 1 дают расщепление 9:3:3:1. Общая формула расщепления по фенотипу будет (3: 1). При дигибридном скрещивании у гибридов каждая пара признаков наследуется независимо от других и дает расщепление 3:1, образуя при этом четыре фенотипические группы, характеризующиеся отношением 9:3:3:1 (при скрещивании двух гомозигот, отличающихся по двум и более признакам, различные признаки наследуются независимо друг от друга, комбинируясь у потомков во всех возможных сочетаниях)
Находящиеся в каждом организме пары альтернативных признаков не смешиваются при образовании гамет и по одному от каждой пары переходят в них в чистом виде. Гамета чиста по одной аллели.
Репортерный ген- ген, встраиваемый в генно-инженерную конструкцию и кодирующий легко выявляемый продукт, активность которого в норме отсутствует в клетках. Такие гены используют, напр., для того, чтобы убедиться, что данная генетическая конструкция успешно введена в клетку, орган или ткань и сохраняет способность экспрессироваться (напр., гены хлорамфениколацетилтрансферазы, люциферазы, бета-галактозидазы, «цветных» белков и др.). За экспрессией гена-репортера легко следить потому, что существует легкий путь анализа его продукта, обычно фермента. Генов - репортеров много - в их числе ген бактериальной бета-галактозидазы (lacZ ) люциферазы и хлорамфениколацетилтрансферазы, ген CAT .
3. Тот факт, что соматические клетки несут в себе весь объем генетической информации, дает возможность изучать на них генетические закономерности всего организма. Основу метода составляет культивирование отдельных соматических клеток человека и получение из них клонов, так же их гибридизацию и селекцию. Соматические клетки обладают рядом особенностей:
- быстро размножаются на питательных средах;
- легко клонируются и дают генетически однородное потомство;
- клоны могут сливаться и давать гибридное потомство;
- легко подвергаются селекции на специальных питательных средах;
- клетки человека хорошо и долго сохраняются при замораживании. Соматические клетки человека получают из разных органов — кожи, костного мозга, крови, ткани эмбрионов. Однако чаще всего используют клетки соединительной ткани (фибробласты) и лимфоциты крови. С помощью метода гибридизации соматических клеток:
а) изучают метаболические процессы в клетке;
б) выявляют локализацию генов в хромосомах;
в) исследуют генные мутации;
г) изучают мутагенную и канцерогенную активность химических веществ.
При гибридизации соматических клеток двух разных линий образуются гетерокарионы — клетки, которые содержат оба родительских ядра. Затем в результате митоза и деления образуются две одноядерные клетки — синкарионы, имеющие хромосомы обоих родительских клеток. При гибридизации соматических клеток двух разных линий образуются гетерокарионы — клетки, которые содержат оба родительских ядра. Затем в результате митоза и деления образуются две одноядерные клетки — синкарионы, имеющие хромосомы обоих родительских клеток. Использование метода гибридизации соматических клеток дает возможность изучать механизмы первичного действия генов и их взаимодействия, что расширяет возможности точной диагностики наследственных болезней на биохимическом уровне. Использование новых методов и подходов к картированию хромосом позволило обнаружить в геноме человека сверх- изменчивые участки ДНК (мини сателлиты), характерные для каждого человека. Одновременно были выделены последовательности ДНК, изменяющиеся с повышенной частотой. Они локализованы по всему геному и имеют разное число копий. Эта дисциплина изучает наследственность и изменчивость соматических клеток, используя культуру клеток различных тканей и органов.
Методы:
1. Простое культивирование
2. Гибридизация — слияние клеток разных типов, например, клетки человек — мышь постепенно теряют хромосомы; можно устанавливать группы сцепления по исчезающим признакам
3. Клонирование — получение потомства из 1 клетки, например, гибридом.
4. Селекция — отбор клеток с заранее заданными свойствами.
Практическое значение метода соматической гибридизации для генетики в том, что с его использованием можно создавать новые гибриды растений, которые не удается получить половой гибридизацией. Благодаря этому методу удается преодолевать межвидовые и даже межродовые барьеры.
Билет 20
