- •Предмет генетики. Место генетики среди биологических наук. Значение генетики для решения задач селекции, медицины, биотехнологии, экологии.
- •3.Дифференциальная активность генов в ходе индивидуального развития. Первичная дифференцировка цитоплазмы, действие генов в раннем эмбриогенезе, амплификация генов
- •1.История генетики в кз.
- •2.Кольцевая карта хромосом прокариот.Генетическая рекомбинация при трансформации.
- •3.Онтогенез как реализация наследственно детерминированной программы развития. Опыты по трансплантации ядер. Методы клонирования генетически идентичных организмов.
- •1)Митотический цикл и фазы митоза
- •2)Закономерности нехромосомного наследования .Методы изучения: реципрокные, возвратные и поглощающие скрещивания, метод трансплантации, биохимические методы.
- •9 Билет
- •1.Строение хромосомы
- •2.Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и селекции.
- •3.Генетика определения пола у человека и у дрозофилы.
- •13 Билет
- •1. Закономерности наследования, открытые г. Менделем. Представление г. Менделя о дискретной наследственности. Представление об аллелях и их взаимодействиях. Анализирующее скрещивание.
- •2. Классификация генных мутаций. Роль мобильных генетических элементов в возникновении генных мутаций и хромосомных перестроек.
- •3. Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
- •1.Закономерности наследования в ди- и полигибридных скрещиваниях. Статистический характер расщеплений.
- •2.Химический мутагенез. Особенности мутагенного действия химических агентов. Факторы, модифицирующие мутационный процесс. Антимутагены. Мутагены окружающей среды и методы их тестирования
- •3.Генетика соматических клеток. Химерные (аллофенные) животные.
- •Неаллельные взаимодействия: комплементарность, эпистаз, полимерия. Биохимические основы неаллельных взаимодействий.
- •Ген как единица функции. Перекрывание генов в одном участке днк. Молекулярно-генетические подходы в исследовании тонкого строения генов.
- •Генетическая гетерогенность популяций. Методы изучения природных популяций. Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе.
- •1.Половые хромосомы. Наследование признаков, сцепленных с полом. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Наследование при нерасхождении половых хромосом.
- •2.Полимерная цепная реакция.Саузерн-блот и нозерн-блот анализы.
- •1)Понятие дозовой компенсации. Компенсация дозы генов при определении пола у дрозофилы.
- •2)Структурная организация генома эукариотов. Регуляторные элементы генома.
- •1. Генетический контроль и молекулярные механизмы репликации.
- •2. Понятие дозовой компенсации. Компенсация дозы генов при определении пола у млекопитающих.
- •Билет28
- •22 Билет
- •Определение группы сцепления мутаций d. Melanogaster: использование доминантных и рецессивных маркеров.
- •Мобильные элементы генома. Классификация и биологическая роль
- •3.Понятие о виде и популяции. Популяция как естественно-истори ческая структура. Понятие о частотах генов и генотипов в популяциях. Закон Харди-Вайнберга, возможности его применения.
- •30 Билет
- •1. Представление школы Моргана о строении и функции гена.
- •2. Политенные хромосомы дрозофилы как модельный объект генетических исследований.
- •3. Закон гомологических рядов в наследственной изменчивости (н.И. Вавилов).
- •33 Билет
- •1. Построение физических карт хромосом с помощью методов молекулярной биологии.
- •2. Рекомбинация: гомологический кроссинговер, сайт-специфическая рекомбинация, транспозиции. Генная конверсия.
- •1.Представление о плазмидах, эписомах и мобильных генетических элементах (инсерционные последовательности, транспозоны) прокариот.
- •3.Явление гетерозиса и его генетические механизмы.
- •1.Сайт-специфическая рекомбинация. Генетический контроль и механизмы процессов транспозиции.
- •2.Векторы эукариот.
- •3.Роль наследственности в формировании поведенческих признаков. Генетика поведения дрозофилы.
- •38 Билет
3. Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
Генная терапия представляет собой одно из новейших направлений развития медицины. К настоящему времени она применялась в отношении уже сотен пациентов, причем в некоторых случаях с достаточно обнадеживающим результатом. Метод основан на переносе генетического материала с помощью вирусных или фаговых векторов (переносчиков) либо непосредственно в кровь и ткани пациента, либо вначале в лабораторно изолированные клетки больного, которые пересаживаются ему впоследствии.[ ...]
Наиболее перспективным считается применение генной терапии для лечения моногенных наследственных заболеваний, при которых предполагается, что введение в организм генетического материала, содержащего нормально функционирующий ген, вызовет решающий терапевтический эффект. Перспективна разработка методов генной терапии злокачественных новообразований. Значительные надежды связываются с разработкой эффективных методов генной терапии СПИДа. Более неоднозначны перспективы генной терапии в отношении мультифакториальных нарушений, таких, к примеру, как сердечно-сосудистые. Однако и здесь, при выявлении “узких” мест заболеваний, возможны варианты генетической коррекции, сулящие по крайней мере возможность замедлить развитие патологии.
Генетическая инженерия - это раздел молекулярной генетики, связанный с целенаправленным созданием новых комбинаций генетического материала. Основа прикладной генетической инженерии - теория гена. Созданный генетический материал способен размножаться в клетке-хозяине и синтезировать конечные продукты обмена.
Практические результаты генной инженерии. В результате интенсивного развития методов генетической инженерии получены клоны множества генов рибосомальной, транспортной и 5S РНК , гистонов, глобина мыши, кролика, человека, коллагена, овальбумина, инсулина человека и др. пептидных гормонов, интерферона человека и прочее. Это позволило создавать штаммы бактерий, производящих многие биологически активные вещества, используемые в медицине, сельском хозяйстве и микробиологической промышленности.
На основе генетической инженерии возникла отрасль фармацевтической промышленности, названная «индустрией ДНК». Это одна из современных ветвей биотехнологии.
Для лечебного применения допущен инсулин человека (хумулин), полученный посредством рекДНК. Кроме того, на основе многочисленных мутантов по отдельным генам, получаемых при их изучении, созданы высокоэффективные тест-системы для выявления генетической активности факторов среды, в том числе для выявления канцерогенных соединений.
билет 16
1. Представление об аллелях и их взаимодействиях. Относительный характер доминирования. Возможные биохимические механизмы доминирования.
Аллельные гены – гены, определяющие развитие альтернативных признаков. Они располагаются в одинаковых локусах гомологичных хромосом. Аллель – форма существования (проявления) гена. При полном дом-нии один ген полностью подавляет проявление другого гена (выпол-ся законы Менделя), при этом гомозиготы по домин-му признаку и гетерозиготы фенотипически неотличимы. При неполном доминировании (промеж-ом наследовании) доминантный ген не полностью подавляет проявление действия рецес-ого гена. У гибридов первого поколения наблюд-ся промежуточное наследование, а во втором поколении - расщепление по фенотипу и генотипу одинаково 1:2:1 (прояв-ся доза действия генов).При кодоминировании гены одной аллельной пары равнозначны, ни один из них не подавляет действия другого; если они оба находятся в генотипе, оба проявляют свое действие.Гомозиготность, состояние следственного аппарата организма, при котором гомологичные хромосомы имеют одну и ту же форму данного гена. Гетерозиготность - состояние, при котором его гомологичные хромосомы несут разные формы (аллели) того или иного гена или различаются по взаиморасположению генов («структурная Гетерозиготность»).
Сверхдоминирование — более сильное проявление признака у гетерозиготной особи, чем у любой гомозиготной. На этом типе аллельного взаимодействия основано явление гетерозиса
Доминирование, связанное с полом происходит тогда, когда одна и та же аллель у самцов проявляется как доминантная, а у самок— как рецессивная.
Относительный характер доминирования зависит от уровня анализа признака.на примере серповидно-клеточной анемии. Гетерозиготные носители гена гемоглобина S (AS) на уровне моря имеют нормальную форму эритроцитов и нормальную концентрацию гемоглобина в крови (полное доминирование А над S). На больших высотах (более 2,5-3 тыс. м) у гетерозигот концентрация гемоглобина понижена (хотя и намного выше, чем у больных), появляются эритроциты серповидной формы (неполное доминирование А над S). Гетерозиготы AS и гомозиготы SS обладают примерно одинаковой устойчивостью к малярии, гомозиготы АА подвержены малярии в большей степени. По данному проявлению ген S доминирует над А.
2. Спонтанные и индуцированные мутации. Количественная оценка частот возникновения мутаций.
Спонтанные – это мутации, которые возникают самопроизвольно, без участия со стороны экспериментатора.
Индуцированные – это те мутации, которые вызваны искусственно, с использованием различных факторов мутагенеза.
Процесс образования мутаций называется мутагенезом, а факторы, вызывающие мутации – мутагенами.
Мутагенные факторы подразделяются на:
1)физические,2)химические,3)биологические.
Причиной спонтанных мутаций являются случайные повреждения хромосом и генов во время деления клетки и репликации ДНК вследствие случайных ошибок в функционировании молекулярных Так же перемещение по геному мобильных элементов, которые могут внедриться в любой ген и вызвать в нем мутацию.
Индуцированнные мутации впервые обнаружили в 1925 г. Г.А. Надсон и Г.С. Филиппов в СССР.
Частотой мутаций называется число вероятных мутаций, каким клетка может подвергнуться за весь срок своей жизни. Частота спонтанных мутаций повышается при воздействии на организм радиоактивных и некоторых химических веществ, называемых мутагенами. Поскольку мутации в соматических клетках приводят к раку, то мутагены являются одновременно и потенциальными канцерогенами. ... Измерять частоту мутаций в сложных диплоидных организмах труднее. Во-первых, изменения фенотипа могут соответствовать мутациям в ряде генов, особенно если это сложный организм. Во-вторых, сложные организмы, вроде человеческого, подвергаются изменениям на протяжении своего развития, и ненормальный фенотип может появиться в результате ненормального развития, а не мутации.
3. Использование методов генетической инженерии для изучения фундаментальных проблем генетики и других биологических наук.Социальные аспекты генетической инженерии.
Особенно большие возможности генная инженерия открывает перед медици ной и фармацевтикой, поскольку применение генной инженерии и гибридомных методов может привести к коренным преобразо ваниям медицины. Многие болезни, для которых в настоящее время не существует адекватных методов диагностики и лечения
Генотерапия — совокупность генноинженерных и медицинских методов, направленных на внесение изменений в генетический аппарат соматических клеток человека в целях лечения заболеваний. Новые подходы к генной терапии соматических клеток можно поделить на две большие категории: генная терапия in vivo и in vitro.
Развитие ряда новых методических приемов привело к расширению возможностей генетической инженерии на клеточном уровне. Определяющую роль сыграл метод гибридизации соматических клеток.
Большие перспективы открывает внесение ядра соматических клеток в безъядерные яйцеклетки.
Среди важных проблем особенно актуальными в конце XX в. стали проблемы генной инженерии. Генная инженерия – это совокупность методов введения в клетку желательной для человека генетической информации. В настоящее время существуют следующие направления генной инженерии: 1) изготовление лекарственных средств, вакцин, сывороток для лечения тяжелобольных; 2) выращивание органов для трансплантации; 3) биосинтез проинсулина, гормона роста человека посредством включения в ДНК бактериальных клеток.Однако при решении вопросов генной инженерии возникают этические проблемы. Эти проблемы в настоящее время становятся глобальными. Научные исследования показывают, что сейчас 50 % патологий обусловлены нарушениями в структуре и функциях наследственного аппарата, 5 % новорожденных имеют генетические дефекты вследствие мутаций хромосом или генов.Генная инженерия, открывая новые большие перспективы в лечении наследственных болезней, в противовес евгенике, ставит своей целью исправить недостатки природы, избавить людей от наследственных аномалий, обеспечить их здоровье. Но это возможно лишь при одновременном улучшении социально-экономических условий, благоприятной природной и социальной среды.
билет 16
1. Представление об аллелях и их взаимодействиях. Относительный характер доминирования. Возможные биохимические механизмы доминирования.
Аллельные гены – гены, определяющие развитие альтернативных признаков. Они располагаются в одинаковых локусах гомологичных хромосом. Аллель – форма существования (проявления) гена. При полном дом-нии один ген полностью подавляет проявление другого гена (выпол-ся законы Менделя), при этом гомозиготы по домин-му признаку и гетерозиготы фенотипически неотличимы. При неполном доминировании (промеж-ом наследовании) доминантный ген не полностью подавляет проявление действия рецес-ого гена. У гибридов первого поколения наблюд-ся промежуточное наследование, а во втором поколении - расщепление по фенотипу и генотипу одинаково 1:2:1 (прояв-ся доза действия генов).При кодоминировании гены одной аллельной пары равнозначны, ни один из них не подавляет действия другого; если они оба находятся в генотипе, оба проявляют свое действие.Гомозиготность, состояние следственного аппарата организма, при котором гомологичные хромосомы имеют одну и ту же форму данного гена. Гетерозиготность - состояние, при котором его гомологичные хромосомы несут разные формы (аллели) того или иного гена или различаются по взаиморасположению генов («структурная Гетерозиготность»).
Сверхдоминирование — более сильное проявление признака у гетерозиготной особи, чем у любой гомозиготной. На этом типе аллельного взаимодействия основано явление гетерозиса
Доминирование, связанное с полом происходит тогда, когда одна и та же аллель у самцов проявляется как доминантная, а у самок— как рецессивная.
Относительный характер доминирования зависит от уровня анализа признака.на примере серповидно-клеточной анемии. Гетерозиготные носители гена гемоглобина S (AS) на уровне моря имеют нормальную форму эритроцитов и нормальную концентрацию гемоглобина в крови (полное доминирование А над S). На больших высотах (более 2,5-3 тыс. м) у гетерозигот концентрация гемоглобина понижена (хотя и намного выше, чем у больных), появляются эритроциты серповидной формы (неполное доминирование А над S). Гетерозиготы AS и гомозиготы SS обладают примерно одинаковой устойчивостью к малярии, гомозиготы АА подвержены малярии в большей степени. По данному проявлению ген S доминирует над А.
2. Спонтанные и индуцированные мутации. Количественная оценка частот возникновения мутаций.
Спонтанные – это мутации, которые возникают самопроизвольно, без участия со стороны экспериментатора.
Индуцированные – это те мутации, которые вызваны искусственно, с использованием различных факторов мутагенеза.
Процесс образования мутаций называется мутагенезом, а факторы, вызывающие мутации – мутагенами.
Мутагенные факторы подразделяются на:
1)физические,2)химические,3)биологические.
Причиной спонтанных мутаций являются случайные повреждения хромосом и генов во время деления клетки и репликации ДНК вследствие случайных ошибок в функционировании молекулярных Так же перемещение по геному мобильных элементов, которые могут внедриться в любой ген и вызвать в нем мутацию.
Индуцированнные мутации впервые обнаружили в 1925 г. Г.А. Надсон и Г.С. Филиппов в СССР.
Частотой мутаций называется число вероятных мутаций, каким клетка может подвергнуться за весь срок своей жизни. Частота спонтанных мутаций повышается при воздействии на организм радиоактивных и некоторых химических веществ, называемых мутагенами. Поскольку мутации в соматических клетках приводят к раку, то мутагены являются одновременно и потенциальными канцерогенами. ... Измерять частоту мутаций в сложных диплоидных организмах труднее. Во-первых, изменения фенотипа могут соответствовать мутациям в ряде генов, особенно если это сложный организм. Во-вторых, сложные организмы, вроде человеческого, подвергаются изменениям на протяжении своего развития, и ненормальный фенотип может появиться в результате ненормального развития, а не мутации.
3. Использование методов генетической инженерии для изучения фундаментальных проблем генетики и других биологических наук.Социальные аспекты генетической инженерии.
Особенно большие возможности генная инженерия открывает перед медици ной и фармацевтикой, поскольку применение генной инженерии и гибридомных методов может привести к коренным преобразо ваниям медицины. Многие болезни, для которых в настоящее время не существует адекватных методов диагностики и лечения
Генотерапия — совокупность генноинженерных и медицинских методов, направленных на внесение изменений в генетический аппарат соматических клеток человека в целях лечения заболеваний. Новые подходы к генной терапии соматических клеток можно поделить на две большие категории: генная терапия in vivo и in vitro.
Развитие ряда новых методических приемов привело к расширению возможностей генетической инженерии на клеточном уровне. Определяющую роль сыграл метод гибридизации соматических клеток.
Большие перспективы открывает внесение ядра соматических клеток в безъядерные яйцеклетки.
Среди важных проблем особенно актуальными в конце XX в. стали проблемы генной инженерии. Генная инженерия – это совокупность методов введения в клетку желательной для человека генетической информации. В настоящее время существуют следующие направления генной инженерии: 1) изготовление лекарственных средств, вакцин, сывороток для лечения тяжелобольных; 2) выращивание органов для трансплантации; 3) биосинтез проинсулина, гормона роста человека посредством включения в ДНК бактериальных клеток.Однако при решении вопросов генной инженерии возникают этические проблемы. Эти проблемы в настоящее время становятся глобальными. Научные исследования показывают, что сейчас 50 % патологий обусловлены нарушениями в структуре и функциях наследственного аппарата, 5 % новорожденных имеют генетические дефекты вследствие мутаций хромосом или генов.Генная инженерия, открывая новые большие перспективы в лечении наследственных болезней, в противовес евгенике, ставит своей целью исправить недостатки природы, избавить людей от наследственных аномалий, обеспечить их здоровье. Но это возможно лишь при одновременном улучшении социально-экономических условий, благоприятной природной и социальной среды.
билет 17
