- •Предмет генетики. Место генетики среди биологических наук. Значение генетики для решения задач селекции, медицины, биотехнологии, экологии.
- •3.Дифференциальная активность генов в ходе индивидуального развития. Первичная дифференцировка цитоплазмы, действие генов в раннем эмбриогенезе, амплификация генов
- •1.История генетики в кз.
- •2.Кольцевая карта хромосом прокариот.Генетическая рекомбинация при трансформации.
- •3.Онтогенез как реализация наследственно детерминированной программы развития. Опыты по трансплантации ядер. Методы клонирования генетически идентичных организмов.
- •1)Митотический цикл и фазы митоза
- •2)Закономерности нехромосомного наследования .Методы изучения: реципрокные, возвратные и поглощающие скрещивания, метод трансплантации, биохимические методы.
- •9 Билет
- •1.Строение хромосомы
- •2.Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и селекции.
- •3.Генетика определения пола у человека и у дрозофилы.
- •13 Билет
- •1. Закономерности наследования, открытые г. Менделем. Представление г. Менделя о дискретной наследственности. Представление об аллелях и их взаимодействиях. Анализирующее скрещивание.
- •2. Классификация генных мутаций. Роль мобильных генетических элементов в возникновении генных мутаций и хромосомных перестроек.
- •3. Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
- •1.Закономерности наследования в ди- и полигибридных скрещиваниях. Статистический характер расщеплений.
- •2.Химический мутагенез. Особенности мутагенного действия химических агентов. Факторы, модифицирующие мутационный процесс. Антимутагены. Мутагены окружающей среды и методы их тестирования
- •3.Генетика соматических клеток. Химерные (аллофенные) животные.
- •Неаллельные взаимодействия: комплементарность, эпистаз, полимерия. Биохимические основы неаллельных взаимодействий.
- •Ген как единица функции. Перекрывание генов в одном участке днк. Молекулярно-генетические подходы в исследовании тонкого строения генов.
- •Генетическая гетерогенность популяций. Методы изучения природных популяций. Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе.
- •1.Половые хромосомы. Наследование признаков, сцепленных с полом. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Наследование при нерасхождении половых хромосом.
- •2.Полимерная цепная реакция.Саузерн-блот и нозерн-блот анализы.
- •1)Понятие дозовой компенсации. Компенсация дозы генов при определении пола у дрозофилы.
- •2)Структурная организация генома эукариотов. Регуляторные элементы генома.
- •1. Генетический контроль и молекулярные механизмы репликации.
- •2. Понятие дозовой компенсации. Компенсация дозы генов при определении пола у млекопитающих.
- •Билет28
- •22 Билет
- •Определение группы сцепления мутаций d. Melanogaster: использование доминантных и рецессивных маркеров.
- •Мобильные элементы генома. Классификация и биологическая роль
- •3.Понятие о виде и популяции. Популяция как естественно-истори ческая структура. Понятие о частотах генов и генотипов в популяциях. Закон Харди-Вайнберга, возможности его применения.
- •30 Билет
- •1. Представление школы Моргана о строении и функции гена.
- •2. Политенные хромосомы дрозофилы как модельный объект генетических исследований.
- •3. Закон гомологических рядов в наследственной изменчивости (н.И. Вавилов).
- •33 Билет
- •1. Построение физических карт хромосом с помощью методов молекулярной биологии.
- •2. Рекомбинация: гомологический кроссинговер, сайт-специфическая рекомбинация, транспозиции. Генная конверсия.
- •1.Представление о плазмидах, эписомах и мобильных генетических элементах (инсерционные последовательности, транспозоны) прокариот.
- •3.Явление гетерозиса и его генетические механизмы.
- •1.Сайт-специфическая рекомбинация. Генетический контроль и механизмы процессов транспозиции.
- •2.Векторы эукариот.
- •3.Роль наследственности в формировании поведенческих признаков. Генетика поведения дрозофилы.
- •38 Билет
Билет№1
Предмет генетики. Место генетики среди биологических наук. Значение генетики для решения задач селекции, медицины, биотехнологии, экологии.
Впервые термин «генетика» был введен У. Бэтсоном в 1906 г. Слово «генетика» происходит от греческого слова «genesis», что означает «происхождение». Генетика изучает два неразрывных свойства живых организмов: наследственность и изменчивость, а также методы управления ими. Поэтому именно наследственность и изменчивость являются предметом генетики. Законы генетики применимы ко всем без исключения организмам, а ее методы широко используются различными биологическими науками: биохимией, зоологией, ботаникой, микробиологией, вирусологией, иммунологией, физиологией, экологией и т. д.
Генетика является одной из самых прогрессивных наук естествознания. Ее достижения изменили естественнонаучное и во многом философское понимание явлений жизни. Роль генетики для практики селекции и медицины очень велика. Значение генетики для медицины будет возрастать с каждым годом, ибо генетика касается самых сокровенных сторон биологии и физиологии человека. Благодаря генетике, ее знаниям, разрабатываются методы лечения ряда наследственных заболеваний, таких, как фенилкетонурия, сахарный диабет и другие. Здесь медико-генетическая работа призвана облегчить страдания людей от действия дефектных генов, полученных ими от родителей. Внедряются в практику приемы медико-генетического консультирования и прентальной диагностики, что позволяет предупредить развитие наследственных заболеваний.
2.Конъюгация у бактерий. Методы генетического картирования при конъюгации.
С помощью трансформации и трансдукции осуществляется односторонний обмен наследственными факторами между бактериями. И эти процессы в какой-то мере компенсируют отсутствие у них настоящего полового процесса.
Поиски полового процесса у бактерий в течение длительного времени были безуспешными. Лишь после того, как были разработаны методы селективных сред и получены штаммы биохимических мутантов, Дж. Ледербергу и Е. Татуму удалось в 1946 г. доказать наличие своеобразного полового процесса у Escherichia coli на примере штамма К12. Процесс переноса генетической информации от одной бактерии к другой при контакте клеток получил название конъюгации.
Для картирования генов у кишечной палочки Ф. Жакоб и И. Вольман разработали особый метод.
Из смешанной культуры двух конъюгирующих линий, маркированных теми или иными генами, через разные промежутки времени после начала конъюгации брали порции этой культуры и помещали в гомогенизатор, в котором с помощью механического встряхивания удается разъединить конъюгирующие бактерии. После этого клетки из культуры рассевали на селективные среды, позволяющие выявлять колонии рекомбинантов.
Описанным приемом удалось установить очень интересное явление. Оказалось, что количество наследственного материала, перемещающегося из одной клетки в другую, пропорционально времени конъюгации клеток. Передача всех учитывающихся в группе сцепления маркеров начиналась через 8 мин и заканчивалась позднее, чем через час после начала конъюгации. Поскольку для перемещения разных генов из одной клетки в другую необходимо разное время, то время передачи фрагмента хромосомы «мужских» клеток в «женские» в этом случае может служить мерой расстояния между генами. В этих опытах был обнаружен и другой очень важный факт, а именно, что единственная группа сцепления Escherichia coli представлена в виде замкнутого круга; она состоит из двунитчатой ДНК длиной 1,2—1,4 ммк.
Различные линии Hfr начинают передачу генов с разных участков хромосомы и в разной последовательности, но линейный порядок генов остается при этом постоянным. Наблюдаемые изменения в последовательности передачи факторов навели на мысль, что у Е. coli в клетках F+ имеется лишь одна, причем кольцевая, группа сцепления. При возникновении клеток Hfr фактор F в разных линиях садится в различных точках кольцевой хромосомы, раскрытие кольца может произойти справа или слева от него. Место разрыва кольца и определяет направление передачи генов характерной для данной линии последовательности. Передача начинается с раскрытого конца кольцевой хромосомы, а на противоположном конце хромосомы всегда оказывается фактор F. Таким образом, свободный от фактора F конец хромосомы оказывается начальной точкой переноса группы сцепления, обозначаемой как локус О (от слова origin). Гены, вошедшие при конъюгации в F-клетку, включаются в ее хромосому посредством процесса, по-видимому, аналогичного кроссинговеру, так как при делении такой «оплодотворенной» клетки появляются рекомбинанты.
