
- •В. А. Валетов, Ю. П. Кузьмин, А. А. Орлова, С. Д. Третьяков
- •Технология приборостроения
- •Оглавление
- •Введение
- •Глава 1. Отработка конструкций деталей
- •на технологичность
- •1.1. Общие понятия и определения
- •1.2. Обеспечение технологичности
- •Глава 2. Точность изготовления деталей приборов
- •и методы ее обеспечения
- •2.1. Метод пробных ходов и промеров
- •2.2. Метод автоматического получения размеров на настроенных станках
- •2.3. Систематические погрешности обработки
- •2.3.1. Погрешности, возникающие вследствие неточности, износа
- •и деформации станков
- •2.3.2. Погрешности, связанные с неточностью и износом режущего инструмента
- •2.3.3. Погрешности, обусловленные упругими деформациями технологической системы под влиянием нагрева
- •2.3.4. Погрешности теоретической схемы обработки
- •2.3.5 . Погрешности, вызываемые упругими деформациями заготовки
- •2.4. Случайные погрешности обработки
- •2.4.1. Законы рассеяния (распределения) размеров
- •2.4.2. Составляющие общего рассеяния размеров деталей
- •2.5. Суммарные погрешности изготовления деталей
- •2.6 Практическое применение законов распределения размеров
- •для анализа точности обработки
- •2.7 Технологические размерные цепи
- •Глава 3. Оптимизация характеристик поверхностного слоя изделий приборостроения
- •3.1. Микрогеометрия и ее оптимизация
- •3.2.Технологические остаточные напряжения
- •3.3. Нанесение покрытий на поверхности изделий
- •3.3.1. Современные технологии нанесения покрытий
- •3.3.1.1. Газодинамический метод
- •3.3.1.2. Импульсно плазменная технология нанесения покрытий
- •3.3.1.3. Нанесение покрытий с помощью вращающихся валков
- •3.3.1.4. Технология нанесения порошковых полимерных покрытий
- •Глава 4. Принципы и особенности базирования
- •при использовании современного оборудования
- •4.1. Классификация баз по различным признакам
- •4.2. Разновидности технологических баз
- •4.3. Назначение технологических баз
- •4.4. Принцип совмещения (единства) баз
- •4.5. Принцип постоянства баз
- •Глава 5. Современные методы проектирования техпроцессов и оформления технологической документации
- •5.1. Методы проектирования
- •5.1.1. Современные САПР ТП
- •5.1.2. Система «TechCard»
- •5.1.3. Система «T-FLEX Технология
- •5.1.4. Система «САПР ТП ВЕРТИКАЛЬ»
- •5.1.5. САПР ТП TechnologiCS
- •5.1.6. Система «МАС ПТП»
- •5.1.7. Система "ТИС-Адрес"
- •5.2. Оформление технологической документации
- •Глава 6. Основы технологии сборки элементов точной механики
- •6.1. Селективная сборка или метод групповой взаимозаменяемости
- •6.2. Основной принцип адаптивно-селективной сборочной технологии
- •6.3. Определение и оптимизация границ групп допусков
- •6.4. Реализация АСС
- •Глава 7. Применение RP-технологий в производстве элементов, приборов и систем.
- •Предисловие
- •7.1 Основные технологии быстрого получения прототипов изделий
- •7.1.1 Стереолитография
- •7.1.2. Технологии с использованием тепловых процессов
- •7.1.2.1. Технология SLS
- •7.1.2.2 LOM - технология
- •7.1.2.3 FDM - технология
- •7.1.3 Трехмерная печать (3D Printers)
- •7.1.3.1. Genisys (Stratasys)
- •7.1.3.2. Z 402 (Z Corporation)
- •7.1.3.3. Actua 2100 (3D Systems)
- •7.1.4 Практическое применение RP - технологий
- •7.1.4.1. QuickCast. Литье по выжигаемым стереолитографическим моделям
- •7.1.4.2 Литье в эластичные силиконовые формы в вакууме
- •7.1.4.3. Промежуточная оснастка
- •7.1.4.4 RP - технологии с использованием листовых материалов
- •7.2 Проектирование и изготовление - единый процесс создания изделий
- •7.2.1 Предисловие
- •7.2.2. Проектирование изделия - изготовление изделия - быстрое усовершенствование изделия
- •7.2.3. Последовательность создания изделия
- •7.2.4. Критические факторы успеха и стратегии конкуренции
- •7.2.5 Ключевой фактор - время
- •7.2.6 Одновременное проектирование - конкурентоспособное проектирование
- •7.2.6.1 Классические ступени проектирования изделий
- •7.2.6.2. Требования к новым методам проектирования изделий
- •7.2.6.3. Принцип одновременности инженеринга
- •7.2.7. Модели
- •7.2.7.1. Классификация моделей
- •7.2.7.2. Влияние моделей на ускорение процесса проектирования изделий
- •7.2.7.3. Мотивация через модели
- •7.2.8. Создание моделей с помощью RP - технологий, как элемент одновременного инженеринга
- •7.2.8.1. RP - модели как гарантия обязательной базы данных
- •7.2.8.2. Определения: быстрое прототипирование, быстрое изготовление, быстрое производство
- •7.2.8.3. Взаимосвязь RP - моделей и фаз проектирования изделий
- •Глава 8.Основы технологии изготовления и сборки элементов радиоэлектронной аппаратуры
- •8.1. Электронные и микроэлектронные элементы
- •8.1.1 Типы полупроводниковых структур
- •Рис. 8.1. Схема классификации полупроводниковых структур
- •Немагнитные полупроводниковые структуры в свою очередь делятся на элементы, химические соединения, твердые растворы.
- •8.1.1.1. Кремний и его применение
- •8.1.2. Дискретные электрорадиоэлементы
- •8.1.2.1 Резисторы
- •8.1.2.2. Конденсаторы
- •8.1.2.3. Катушки индуктивности
- •8.1.2.4. Трансформаторы
- •8.1.2.5. Диоды
- •8.1.2.5.1. Светодиоды
- •8.1.2.6. Транзисторы
- •8.1.2.6.1. Пластиковые транзисторы
- •8.1.3. Технология изготовления тонкопленочных интегральных микросхем
- •8.1.3.1. Классификация и назначение интегральных микросхем
- •Рис. 8.33. Современная интегральная микросхема
- •8.1.3.1.1. Классификация интегральных микросхем
- •По степени интеграции. Названия микросхем в зависимости от степени интеграции (в скобках указано количество элементов для цифровых схем):
- •По технологии изготовления.
- •По виду обрабатываемого сигнала
- •Аналоговые (входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания)
- •8.1.3.1.2 Назначение интегральных микросхем
- •8.1.3.2. Материалы для изготовления тонкопленочных и толстопленочных интегральных схем
- •8.1.3.2.1.Напыление частицами
- •8.1.3.2.2. Физико-химические способы получения пленочных покрытий
- •8.1.4. Технология изготовления полупроводниковых интегральных микросхем
- •8.1.4.1.1. Подготовка поверхности
- •8.1.4.1.2. Нанесение фотослоя
- •8.1.4.1.3. Совмещение и экспонирование
- •8.1.4.1.4. Проявление
- •8.1.4.1.5.Травление
- •8.1.5 Электрический монтаж кристаллов интегральных микросхем на коммутационных платах
- •8.1.5.1. Проволочный монтаж
- •8.1.5.2. Ленточный монтаж
- •8.1.5.3. Монтаж с помощью жестких объемных выводов
- •8.1.5.4. Микросварка
- •8.1.5.5. Изготовление системы объемных выводов
- •8.2.1. Основные характеристики печатных плат
- •8.2.1.1. Материалы, используемые для изготовления печатных плат
- •8.2.1.2. Точность печатных плат
- •8.2.1.3. Отверстия печатных плат
- •8.2.1.4. Толщина печатных плат
- •8.2.2. Типы печатных плат
- •8.2.2.1. Односторонние печатные платы
- •8.2.2.2. Двухсторонние печатные платы
- •8.2.2.3. Многослойные печатные платы
- •8.2.2.4. Гибкие печатные платы
- •8.2.2.5. Рельефные печатные платы
- •8.2.2.5.1. Технологии изготовления рельефных печатных плат
- •8.2.3. Технологические процессы изготовления печатных плат
- •8.2.3.1. Основные методы изготовления печатных плат
- •8.2.3.2. Аддитивная технология
- •8.2.3.3. Комбинированный позитивный метод
- •8.2.3.4. Тентинг-метод
- •8.2.3.5. Струйная печать как способ изготовления электронных плат
- •8.2.3.6. Технологии настоящего и будущего
- •8.2.4. Сборка и монтаж печатных плат
- •8.2.5. Методы контроля печатных плат
- •8.2.5.1. Система контроля качества печатных плат Aplite 3
- •Рис. 8.67. Интерфейс Системы Aplite 3
- •8.2.5.2. Электрический контроль печатных плат
- •8.3. Современное оборудование для изготовления радиоэлектронной аппаратуры
- •9.1. Основные понятия
- •9.2. Материалы для нанотехнологий
- •9.2.1. Фуллерены
- •9.2.2. Нанотрубки
- •9.2.3. Ультрадисперсные наноматериалы
- •9.3. Оборудование для нанотехнологий
- •9.4. Развитие нанотехнологий
- •9.4.1. Новейшие достижения
- •9.4.2. Перспективы развития
- •9.4.3. Проблемы и опасности
- •Литература
- •КАФЕДРА ТЕХНОЛОГИИ ПРИБОРОСТРОЕНИЯ
8.1.3.2.2. Физико-химические способы получения пленочных покрытий
Получение пленочных покрытий сопровождается рядом специфических явлений, из них следует выделить последовательность процессов формирования пленок.
Процесс получения пленок начинается с осаждения (адсорбции) т.н. адатомов. В условиях равновесия с газовой средой количество сорбируемых в единицу времени атомов, молекул или ионов равно количеству десорбируемых. Местами на поверхности подложки, где в первую очередь происходит сорбция, являются участки локальных энергетических максимумов, например, узлы кристаллической решетки, что приводит к наиболее существенному выигрышу уменьшения свободной энергии поверхности. Силами, удерживающими частицы, могут быть в зависимости от их природы и характера поверхности дисперсионные взаимодействия Ван-дер-Ваальса, химические – ковалентные или ионные. Адатомы могут быть как фиксированными (при высоких энергиях связи с подложкой), так и подвижными, т.е. перемещаться от одного локального энергетического максимума к другому за счет градиента, например, химического потенциала. Последнее явление облегчает протекание последующих стадий образования пленки.
Далее возникают за счет ассоциации нескольких адатомов двухмерные островковые неструктурные образования, которые также в принципе могут обладать подвижностью. В условиях равновесия могут иметься докритические и сверхкритические островки, первые из которых растворяются и переходят в отдельные адатомы или десорбируются, вторые способны к дальнейшему росту.
Происходит коалесценция островков с образованием структурных зародышей, например, 4×4, 5×5 и т.д. узлов кристаллической решетки новой фазы. По различным теоретическим представлением размер структурных зародышей довольно значительно различается.
Образуются каналы свободной поверхности подложки за счет смыкания между собой структурных зародышей с дальнейшим формированием кристаллической структуры покрытия (Рис. 8.38).
Возникают отдельные поверхностные поры без покрытия, которые перекрываются в последнюю очередь с образованием сплошной пленки.
Происходит конденсация последующих слоев пленки, которая в конечном итоге при продолжении процесса переходит в трехмерное образование. На этом этапе последующие слои осаждаются, в принципе подчиняясь тем же закономерностям, что и первичные.
238

Рис. 8.38. Стадии заполнения поверхности подложки оксидом меди при пиролизе раствора нитрат меди - поливиниловый спирт
Пленочные технологии лежат в основе создания элементов интегральной оптики, устройств в которых в оптических средах создаются зоны и участки, выполняющие различные функции, что позволяет существенно миниатюризировать изготовляемые приборы (Рис. 8.39). Интегральные схемы, широко используемые в электронной технике, также базируются на пленочной технологии (Рис. 8.40) с использованием для нанесения на подложки схем заданной конфигурации фоторезистора. Например, на кремниевую монокристаллическую подложку с р-типом проводимости наносят состав на основе полимеров с добавками светочувствительных веществ. Под действием локального облучения с использованием масок или тонкого лазерного пучка фоторезистор теряет растворимость, необлученная его часть удаляется. Затем за счет специальной обработки, например, ионной бомбардировки, открытые участки поверхности приобретают n-тип проводимости и на их границе с основным объёмом подложки создается р-n переход, служащий основой функциональной единицы, например микродиода. Элементы микросхемы соединяются между собой напыляемыми металлическими проводниками. Микро-резисторы, конденсаторы могут быть сформированы, например, путем напыления слоев соответствующих материалов заданной конфигурации. Возможно получение функциональных элементов в нескольких уровнях по глубине. Таким образом создаются микросхемы, (ГБИС – гигабольшие интегральные микросхемы), содержащие миллиарды единичных функциональных элементов на 1 см2 поверхности носителя, тогда как первые из созданных малые микросхемы (МИС) содержали лишь порядка 102/см2 элементов. Кроме того, применялись и гибридные микросхемы (ГИС) и сборки, включающие навесные радиоэлементы.
239

Рис. 8.39. Примеры интегрально-оптических элементов:. а) - схема интегрально-оптического элемента связи на основе дифракционных решеток: 1 - диэлектрическая или полупроводниковая подложка (из LiNbO3, GaAlAs и др.), 2 - планарный интегрально-оптический волновод, 3 - фазовые дифракционные решетки созданные на поверхности волновода методами фото- и электроннолучевой литографии, 4 - световые потоки, n1 и n2 - показатели преломления подложки и световедущего слоя, соответственно;. б) - схема интегральнооптического волновода с суживающимся краем: 1 - диэлектрическая или полупроводниковая подложка (из LiNbO3), 2 - интегрально-оптический волновод, 3 - суживающийся край световедущего слоя, 4 - световые потоки в) - схема интегрально-оптического элемента связи с использованием рупорных переходов: 1 - подложка, 2 - интегрально-оптический волновод с плавно меняющейся шириной поперечного сечения (рупорный волновод), 3 - рупорные переходы, 4 - световые потоки. г) - схематическое изображение геодезической линзы: 1 - подложка, 2 - планарный интегрально-оптический волновод, 3 - углубление на поверхности волновода, 4 - световые потоки
240

Рис. 8.40. Последовательные стадии изготовления монолитной интегральной схемы: a) - исходная полупроводниковая пластина с проводимостью р-типа, покрытая слоями SiO2, и фоторезистора; б) - облучение фоторезистора через фотошаблон; в) - полупроводниковая пластина с "окном" в слое SiO2 , образовавшемся в результате облучения и последующего травления; г) - диффузия донорных примесей и создание области с проводимостью n-типа. (1 - слой фоторезистора, 2 - слой SiO2 3 - полупроводниковая пластина, 4 - фотошаблон, 5 - засвеченный участок фоторезистора, 6 - донорные атомы.)
8.1.4. Технология изготовления полупроводниковых интегральных микросхем
В технологии полупроводниковых интегральных микросхем отдельные элементы получают путем целенаправленного изменения свойств материала подложки легированной примесью. Это изменение свойств материала можно осуществлять только после компоновки элементов в определенной области на подложке, при этом элементы, реализованные на этой основе, электрически соединяются друг с другом тонкими металлическими проводниками. Рассмотрим технологию фотолитографии.
8.1.4.1 Фотолитография
Процессы легирования, а также наращивания слоёв различных материалов призваны сформировать вертикальную физическую структуру ИМС. Необходимые форма и размеры элементов и областей в каждом слое структуры обеспечиваются процессом фотолитографии. Фотолитография - процесс избирательного травления поверхностного слоя с использованием защитной фотомаски.
На рис. 8.41. приведена укрупнённая структурная схема процесса фотолитографии. Отдельные этапы на схеме включают в себя несколько операций. Ниже в качестве примера приведено описание основных операций при избирательном травлении оксида кремния (SiO2), которое используется многократно и имеет целью создание окон под избирательное легирование, а также контактных окон.
241