
- •В. А. Валетов, Ю. П. Кузьмин, А. А. Орлова, С. Д. Третьяков
- •Технология приборостроения
- •Оглавление
- •Введение
- •Глава 1. Отработка конструкций деталей
- •на технологичность
- •1.1. Общие понятия и определения
- •1.2. Обеспечение технологичности
- •Глава 2. Точность изготовления деталей приборов
- •и методы ее обеспечения
- •2.1. Метод пробных ходов и промеров
- •2.2. Метод автоматического получения размеров на настроенных станках
- •2.3. Систематические погрешности обработки
- •2.3.1. Погрешности, возникающие вследствие неточности, износа
- •и деформации станков
- •2.3.2. Погрешности, связанные с неточностью и износом режущего инструмента
- •2.3.3. Погрешности, обусловленные упругими деформациями технологической системы под влиянием нагрева
- •2.3.4. Погрешности теоретической схемы обработки
- •2.3.5 . Погрешности, вызываемые упругими деформациями заготовки
- •2.4. Случайные погрешности обработки
- •2.4.1. Законы рассеяния (распределения) размеров
- •2.4.2. Составляющие общего рассеяния размеров деталей
- •2.5. Суммарные погрешности изготовления деталей
- •2.6 Практическое применение законов распределения размеров
- •для анализа точности обработки
- •2.7 Технологические размерные цепи
- •Глава 3. Оптимизация характеристик поверхностного слоя изделий приборостроения
- •3.1. Микрогеометрия и ее оптимизация
- •3.2.Технологические остаточные напряжения
- •3.3. Нанесение покрытий на поверхности изделий
- •3.3.1. Современные технологии нанесения покрытий
- •3.3.1.1. Газодинамический метод
- •3.3.1.2. Импульсно плазменная технология нанесения покрытий
- •3.3.1.3. Нанесение покрытий с помощью вращающихся валков
- •3.3.1.4. Технология нанесения порошковых полимерных покрытий
- •Глава 4. Принципы и особенности базирования
- •при использовании современного оборудования
- •4.1. Классификация баз по различным признакам
- •4.2. Разновидности технологических баз
- •4.3. Назначение технологических баз
- •4.4. Принцип совмещения (единства) баз
- •4.5. Принцип постоянства баз
- •Глава 5. Современные методы проектирования техпроцессов и оформления технологической документации
- •5.1. Методы проектирования
- •5.1.1. Современные САПР ТП
- •5.1.2. Система «TechCard»
- •5.1.3. Система «T-FLEX Технология
- •5.1.4. Система «САПР ТП ВЕРТИКАЛЬ»
- •5.1.5. САПР ТП TechnologiCS
- •5.1.6. Система «МАС ПТП»
- •5.1.7. Система "ТИС-Адрес"
- •5.2. Оформление технологической документации
- •Глава 6. Основы технологии сборки элементов точной механики
- •6.1. Селективная сборка или метод групповой взаимозаменяемости
- •6.2. Основной принцип адаптивно-селективной сборочной технологии
- •6.3. Определение и оптимизация границ групп допусков
- •6.4. Реализация АСС
- •Глава 7. Применение RP-технологий в производстве элементов, приборов и систем.
- •Предисловие
- •7.1 Основные технологии быстрого получения прототипов изделий
- •7.1.1 Стереолитография
- •7.1.2. Технологии с использованием тепловых процессов
- •7.1.2.1. Технология SLS
- •7.1.2.2 LOM - технология
- •7.1.2.3 FDM - технология
- •7.1.3 Трехмерная печать (3D Printers)
- •7.1.3.1. Genisys (Stratasys)
- •7.1.3.2. Z 402 (Z Corporation)
- •7.1.3.3. Actua 2100 (3D Systems)
- •7.1.4 Практическое применение RP - технологий
- •7.1.4.1. QuickCast. Литье по выжигаемым стереолитографическим моделям
- •7.1.4.2 Литье в эластичные силиконовые формы в вакууме
- •7.1.4.3. Промежуточная оснастка
- •7.1.4.4 RP - технологии с использованием листовых материалов
- •7.2 Проектирование и изготовление - единый процесс создания изделий
- •7.2.1 Предисловие
- •7.2.2. Проектирование изделия - изготовление изделия - быстрое усовершенствование изделия
- •7.2.3. Последовательность создания изделия
- •7.2.4. Критические факторы успеха и стратегии конкуренции
- •7.2.5 Ключевой фактор - время
- •7.2.6 Одновременное проектирование - конкурентоспособное проектирование
- •7.2.6.1 Классические ступени проектирования изделий
- •7.2.6.2. Требования к новым методам проектирования изделий
- •7.2.6.3. Принцип одновременности инженеринга
- •7.2.7. Модели
- •7.2.7.1. Классификация моделей
- •7.2.7.2. Влияние моделей на ускорение процесса проектирования изделий
- •7.2.7.3. Мотивация через модели
- •7.2.8. Создание моделей с помощью RP - технологий, как элемент одновременного инженеринга
- •7.2.8.1. RP - модели как гарантия обязательной базы данных
- •7.2.8.2. Определения: быстрое прототипирование, быстрое изготовление, быстрое производство
- •7.2.8.3. Взаимосвязь RP - моделей и фаз проектирования изделий
- •Глава 8.Основы технологии изготовления и сборки элементов радиоэлектронной аппаратуры
- •8.1. Электронные и микроэлектронные элементы
- •8.1.1 Типы полупроводниковых структур
- •Рис. 8.1. Схема классификации полупроводниковых структур
- •Немагнитные полупроводниковые структуры в свою очередь делятся на элементы, химические соединения, твердые растворы.
- •8.1.1.1. Кремний и его применение
- •8.1.2. Дискретные электрорадиоэлементы
- •8.1.2.1 Резисторы
- •8.1.2.2. Конденсаторы
- •8.1.2.3. Катушки индуктивности
- •8.1.2.4. Трансформаторы
- •8.1.2.5. Диоды
- •8.1.2.5.1. Светодиоды
- •8.1.2.6. Транзисторы
- •8.1.2.6.1. Пластиковые транзисторы
- •8.1.3. Технология изготовления тонкопленочных интегральных микросхем
- •8.1.3.1. Классификация и назначение интегральных микросхем
- •Рис. 8.33. Современная интегральная микросхема
- •8.1.3.1.1. Классификация интегральных микросхем
- •По степени интеграции. Названия микросхем в зависимости от степени интеграции (в скобках указано количество элементов для цифровых схем):
- •По технологии изготовления.
- •По виду обрабатываемого сигнала
- •Аналоговые (входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания)
- •8.1.3.1.2 Назначение интегральных микросхем
- •8.1.3.2. Материалы для изготовления тонкопленочных и толстопленочных интегральных схем
- •8.1.3.2.1.Напыление частицами
- •8.1.3.2.2. Физико-химические способы получения пленочных покрытий
- •8.1.4. Технология изготовления полупроводниковых интегральных микросхем
- •8.1.4.1.1. Подготовка поверхности
- •8.1.4.1.2. Нанесение фотослоя
- •8.1.4.1.3. Совмещение и экспонирование
- •8.1.4.1.4. Проявление
- •8.1.4.1.5.Травление
- •8.1.5 Электрический монтаж кристаллов интегральных микросхем на коммутационных платах
- •8.1.5.1. Проволочный монтаж
- •8.1.5.2. Ленточный монтаж
- •8.1.5.3. Монтаж с помощью жестких объемных выводов
- •8.1.5.4. Микросварка
- •8.1.5.5. Изготовление системы объемных выводов
- •8.2.1. Основные характеристики печатных плат
- •8.2.1.1. Материалы, используемые для изготовления печатных плат
- •8.2.1.2. Точность печатных плат
- •8.2.1.3. Отверстия печатных плат
- •8.2.1.4. Толщина печатных плат
- •8.2.2. Типы печатных плат
- •8.2.2.1. Односторонние печатные платы
- •8.2.2.2. Двухсторонние печатные платы
- •8.2.2.3. Многослойные печатные платы
- •8.2.2.4. Гибкие печатные платы
- •8.2.2.5. Рельефные печатные платы
- •8.2.2.5.1. Технологии изготовления рельефных печатных плат
- •8.2.3. Технологические процессы изготовления печатных плат
- •8.2.3.1. Основные методы изготовления печатных плат
- •8.2.3.2. Аддитивная технология
- •8.2.3.3. Комбинированный позитивный метод
- •8.2.3.4. Тентинг-метод
- •8.2.3.5. Струйная печать как способ изготовления электронных плат
- •8.2.3.6. Технологии настоящего и будущего
- •8.2.4. Сборка и монтаж печатных плат
- •8.2.5. Методы контроля печатных плат
- •8.2.5.1. Система контроля качества печатных плат Aplite 3
- •Рис. 8.67. Интерфейс Системы Aplite 3
- •8.2.5.2. Электрический контроль печатных плат
- •8.3. Современное оборудование для изготовления радиоэлектронной аппаратуры
- •9.1. Основные понятия
- •9.2. Материалы для нанотехнологий
- •9.2.1. Фуллерены
- •9.2.2. Нанотрубки
- •9.2.3. Ультрадисперсные наноматериалы
- •9.3. Оборудование для нанотехнологий
- •9.4. Развитие нанотехнологий
- •9.4.1. Новейшие достижения
- •9.4.2. Перспективы развития
- •9.4.3. Проблемы и опасности
- •Литература
- •КАФЕДРА ТЕХНОЛОГИИ ПРИБОРОСТРОЕНИЯ

Недостатки
1.Высокая стоимость – главный недостаток по сравнению с лампами накаливания и неоновыми трубками различных типов. На изготовление объемной буквы со светодиодной подсветкой в полтора - два раза выше стоимости неонового изделия аналогичной яркости. Однако производители по всему миру продолжают наращивать мощности по изготовлению светодиодов,
ицены на данные источники света неуклонно понижаются.
2.Также недостатком при использовании светодиодов в конструировании объемных букв средних и крупных размеров можно считать их малые габариты, из-за которых требуется объединять многочисленные отдельные светодиоды в группы. Чтобы обеспечить яркий и красочный свет, мгновенно привлекающий внимание потребителя, требуется большое количество светодиодов. Недостатки светодиодов видны на рисунке 8.26.
Рис. 8.26. Недостатки светодиодов
Специалисты подчеркивают, что в ближайшие несколько лет цены на светодиоды упадут до уровня, при котором готовые изделия из них будут стоить дешевле неоновых. Уже сейчас доступны светодиодные комплекты для внутренней подсветки элементов оформления зданий и наружной рекламы, что значительно упрощает технологию и снижает трудоемкость производства объемных букв. В этом случае необходимости в квалифицированной работе с неоном, электропроводкой высоковольтных проводов для подключения газоразрядных трубок и мерах для предотвращения ошибок, ведущих к перегоранию источников света, нет.
8.1.2.6. Транзисторы
Транзистор (от англ. transfer - переносить и resistor - сопротивление) – трёхэлектродный полупроводниковый электронный прибор, в котором ток в цепи двух электродов управляется третьим электродом. Управление тока в выходной цепи осуществляется за счет изменения входного тока в биполярном транзисторе, либо входного напряжения в МОП (металл-окисел- полупроводник) транзисторе. Это усилительное свойство транзисторов используется в аналоговой технике (аналоговые ТВ, радио, связь и т.п.). Другим важнейшим применением транзисторов является цифровая техника (логика, память, процессоры, компьютеры, цифровая связь и т.п.) (рис. 8.28).
224

Вся современная цифровая техника основана на МОП (металл-окисел- полупроводник) транзисторах (МОПТ). Иногда их называют МДП (металл- диэлектрик-полупроводник) транзисторы. Транзисторы изготавливаются в рамках интегральной технологии на одном кремниевом кристалле (чипе) и составляют элементарный "кирпичик" для построения памяти, процессора, логики и т.п.
Типы корпусов транзисторов показаны на рисунке 8.27.
Рис. 8.27. Типы корпусов транзисторов
225

Рис. 8.28. Применение транзисторов
Размеры современных МОПТ (рис. 8.29) составляют от 130 до 60 нанометров. Это одна десятитысячная часть миллиметра. На одном чипе (обычно размером 1-2 квадратных сантиметров) размещаются десятки миллионов МОПТ. На протяжении десятков лет происходит уменьшение размеров (миниатюризация) МОПТ и увеличение их количества на одном чипе (степень интеграции), в ближайшие годы ожидается увеличение степени интеграции до сотен миллионов транзисторов на чипе. Уменьшение размеров МОПТ приводит также к повышению быстродействия процессоров (тактовой частоты). Каждую секунду сегодня в мире изготавливается полмиллиарда МОП транзисторов.
Рис. 8.29. Современные МОПТ
Обозначения транзисторов разных типов приведены в таблице 8.1.
226

Таблица8.1.
Биполярные |
|
|
Полевые |
|
|
|
|
||||||
p-n-p |
|
|
|
|
|
|
Канал |
|
|
|
|
|
|
|
|
|
|
|
|
p-типа |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n-p-n |
|
|
|
|
Канал |
|
|
|
|
||
|
|
|
|
n-типа |
|
|
|
|
|
|
|
На рис.8.30 представлены стадии изготовления транзисторов.
Рис. 8.30.Стадии изготовления транзисторов:
а – исходная пластина; б – после первого окисления; в – после первой фотолитографической обработки; г – после создания базовой области и второго окисления; д – после второй фотолитографической обработки; е – после создания эмиттерной области и третьего окисления; ж – после третьей фотолитографической обработки; з – после металлизации; 1 – исходный кремний с электропроводностью n-типа; 2 – маскирующая плёнка двуокиси кремния; 3 – базовая область; 4 – эмиттерная область; 5 – металлическая плёнка (контакты).
8.1.2.6.1. Пластиковые транзисторы
Разработанный в исследовательском центре Xerox материал представляет собой полимер на основе тиофена. Важнейшей его особенностью является то, что он устойчив к воздействию кислорода воздуха, тогда как большинство других органических полимерных полупроводников теряют под его действием свои свойства. Добиться большей стабильности своего полимера удалось за счет подробного анализа функций различных структурных элементов полимера. В результате был получен материал с замечательным набором
227

свойств. Подвижность электрона в нем составляет 0,12 см2/В·с. Еще одно преимущество новой разработки Xerox заключается в том, что сборка транзисторов из нового материала возможна при помощи достаточно простой технологии в обычных условиях (рис. 8.31). Не требуется повышенных температур, сверхчистых помещений и т.д. На практике новый материал можно использовать в самых различных областях: от электронных меток для товаров в магазинах до гибких компьютерных дисплеев. Но к практическому применению новых разработок Xerox пока не приступал.
Рис. 8.31. Пластиковый транзистор
Пластиковые транзисторы будут прежде всего использоваться для создания легких и гибких дисплеев компьютеров и экранов телевизоров. Транзисторы могут накладываться друг на друга, образуя вертикальные стопки. Возможно также производство светодиодов, слои которых могут налагаться на слой полимерных транзисторов (рис. 8.32).
Рис. 8.32. Применение пластиковых транзисторов
228