- •1. Общая характеристика систем радиоавтоматики (ра)
- •Понятие систем ра
- •2. Описание систем рАдиоавтоматики
- •2.1.Система частотной автоподстройки (чап)
- •2.1.2. Элементы системы и их математическое описание. Структурная схема
- •2.3.2. Математическое описание. Структурная схема системы слежения за временным положением
- •2.5. Обобщенные функциональная и структурная схемы радиотехнических следящих систем
- •3. Математические методы описания линейных стационарных непрерывных систем
- •3.1.Общая характеристика методов
- •3.2. Использование дифференциальных уравнений
- •3.3. Использование передаточных функций
- •3.4. Использование переходной и весовой функций
- •3.6. Использование логарифмических частотных характеристик
- •3.7. Передаточные функции следящих систем
- •3.8. Передаточные функции в обобщенной структурной схеме радиотехнической следящей системы
- •3.9. Типовые динамические звенья следящих систем
- •4. Устойчивость радиоэлектронных следящих систем
- •4.1 Понятие устойчивости
- •4.2.Алгебраические критерии устойчивости
- •4.3.Частотные критерии устойчивости
- •4.4.Определение устойчивости с помощью лачх разомкнутой системы
- •4.5. Абсолютно и условно устойчивые системы
- •5. Анализ качественных характеристик следящей системы
- •5.1.Показатели качества следящей системы
- •5.2. Анализ установившейся (динамической) ошибки
- •5.3. Понятие астатизма системы
- •5.4. Методы вычисления коэффициентов ошибки
- •5.5. Динамические ошибки в следящих системах с астатизмом различного порядка
- •6. Анализ случайных процессов в линейных системах радиоэлектронных следящих системах
- •6.1.Определение статистических характеристик случайных процессов в линейных системах
- •6.2.Расчет дисперсии случайного процесса с помощью стандартных интегралов
- •6.3.Эквивалентная шумовая полоса следящих систем
- •6.4.Оптимизация параметров следящих систем
- •6.5. Память следящих систем
- •7. Проектирование систем радиоавтоматики
- •7.1. Постановка задачи
- •7.2. Определение желаемой пф разомкнутой системы
- •7.3. Методы коррекции передаточных функций
- •7.4. Типы параллельных и последовательных корректирующих звеньев
- •8. Нелинейные системы радиоавтоматики
- •8.1. Методы исследования нелинейных систем
- •8.2.Анализ нелинейного режима работы системы чап
- •8.3. Метод фазовой плоскости
- •8.4. Метод статистической линеаризации
- •8.5. Метод гармонической линеаризации
- •9. Дискретные системы радиоавтоматики
- •9.3. Математическое описание дискретных систем
- •10. Цифровые системы радиоавтоматики
- •10.1.Общая характеристика цифровых систем
- •10.2. Аналого-цифровая следящая система
- •10.3. Цифровые временные дискриминаторы
- •10.5. Цифровые частотные дискриминаторы
- •10.6. Цифровые фильтры
- •10.7. Цифровые генераторы опорного сигнала
- •10.8. Примеры реализации цифровых следящих систем
- •11. Поиск сигнала. Задачи и методы поиска
- •1.1. Понятие систем ра 2
- •1.2. Принципы построения и классификация систем ра 2
3.6. Использование логарифмических частотных характеристик
Метод логарифмических частотных характеристик (ЛЧХ) используется как для анализа, так и для синтеза следящих систем. Метод построения ЛЧХ состоит в графическом изображении АЧХ и ФЧХ в логарифмическом масштабе. Особенно удобен метод, использующий асимптотические логарифмические амплитудно-частотные характеристики ( ЛАЧХ). Для некоторых систем, называемых мимнимально-фазовыми, достаточно построить лишь ЛАЧХ, так как она определяет все свойства системы. К минимально-фазовым относят системы, у которых корни характеристических уравнений, составленных из числителя и знаменателя передаточной функции имеют отрицательные вещественные части.
Метод построения асимптотических ЛАХ состоит в следующем. Выражение для ЛАЧХ и ЛФЧХ записываются в виде
Частота откладывается по оси абсцисс в логарифмическом масштабе, а усиление – в децибелах (дБ) по оси ординат. Логарифмическая фазочастотная характеристика (ЛФЧХ) строится под ЛАЧХ с общей осью частот.
Метод построения асимптотических ЛАХ рассмотрим на примере.
Пусть передаточная функция разомкнутой системы определяется выражением
.
Заменой переменной перейдем к частотной передаточной функции
,
где Т1, Т2, Т3 – постоянные времени соответствующих звеньев; К – коэффи циент усиления или добротность (имеет размерность частоты).
Модуль частотной передаточной функции А(ω) последовательно включенных звеньев определяется как произведение модулей этих звеньев. а аргумент – как сумма фазовых сдвигов звеньев.
;
Обычно полагают,
что
.
Пусть Т1
>
Т2,
>
Т3.
Обозначим
– сопрягающая частота;
.
Тогда
;
При построении асимптотических ЛАХ используется следующее правило:
Если
,
то пренебрегают вторым слагаемым, т.е.
.
Если
,
то пренебрегают единицей,
При этом в точке сопряжения ошибка не превышает нескольких дБ.
Асимптотическая ЛАХ для n последовательно включенных звеньев состоит из n+1 асимптоты, каждая из которых строится в диапазоне частот:
1ая:
;
2ая:
;
… … … … …
n+1:
.
Построим L(ω) (рис. 3.4).
Уравнение для первой асимптоты ( ):
,
при ω = K, L(ω) = 0.
Наклон асимптоты будет равен –20 дБ на декаду.
Вторая асимптота строится в диапазоне частот ( )
в соответствии с уравнением:
Рис. 3.4. Логарифмическая амплитудно-частотная характеристика
.
Наклон асимптоты будет равен –40 дБ на декаду.
Третья асимптота
строится в диапазоне частот (
).
Уравнение третьей асимптоты:
Это уравнение прямой, проходящей через точки L (ω2) и L (ω3),
где
.
Таким образом, можно записать:
В точке L2 асимптота изменяет свой наклон на +20 дБ, итоговый наклон третьей асимптоты составляет –20 дБ.
Четвертая асимптота
строится в диапазоне частот (
)
в соответствии с уравнением:
Таким образом, при переходе через сопрягающую частоту ω3 асимптота меняет свой наклон на –20 дБ, и в итоге имеет наклон –40 дБ/дек.
Выводы:
1.При переходе
текущего значения частоты через очередную
сопрягающую частоту наклон асимптоты
изменяется на +20 дБ, если множитель
находится
в числителе выражения для расчета АЧХ
и изменяется на –20 дБ, если этот множитель
находиться в знаменателе.
2. Наклон каждой асимптоты кратен 20 дБ /дек.
По ЛАЧХ можно восстановить частотную передаточную функцию.
