- •Интегральное исчисление функции одной переменной. Дифференциальные уравнения Часть 3
- •Оглавление
- •Часть 3 1
- •Часть 3 52 Введение
- •Методические указания по темАм "Интегральное исчисление функции одной переменной" и "Дифференциальные уравнения"
- •Справочный материал по теме "Интегральное исчисление функции одной переменной"
- •1. Первообразная и неопределенный интеграл. Таблица интегралов
- •2. Свойства неопределенного интеграла. Замена переменной под знаком неопределенного интеграла
- •3. Интегрирование по частям
- •8. Вычисление площади плоской фигуры в декартовой системе координат (дск)
- •9. Вычисление площади плоской фигуры в полярной системе координат (пск)
- •10. Вычисление объема тела вращения
- •1 1. Вычисление длины дуги плоской кривой
- •Примерный вариант и образец выполнения контрольной работы 5
- •Справочный материал по теме "Дифференциальные уравнения"
- •1. Дифференциальные уравнения 1-го порядка
- •2. Методы решения основных типов дифференциальных уравнений 1-го порядка
- •2.1. Дифференциальные уравнения с разделяющимися переменными
- •2.2. Линейные дифференциальные уравнения 1-го порядка
- •2.3. Уравнения Бернулли
- •2.4.Однородные уравнения
- •3. Дифференциальные уравнения 2-го порядка
- •4. Решение дифференциальных уравнений 2-го порядка, допускающих понижение порядка
- •4.1. Дифференциальные уравнения 2-го порядка, не содержащие искомой функции
- •4.2. Дифференциальные уравнения 2-го порядка, не содержащие независимой переменной
- •5. Решение линейных дифференциальных уравнений 2-го порядка с постоянными коэффициентами
- •5.1. Линейные дифференциальные уравнения 2-го порядка
- •5.2. Линейные однородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами
- •5.3. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами
- •Метод вариации произвольных постоянных
- •Метод неопределенных коэффициентов
- •6. Системы двух линейных дифференциальных уравнений и их решение порядка методом повышения порядка
- •Примерный вариант и образец выполнения контрольной работы 6
- •Варианты контрольнЫх работ
- •Варианты контрольной работы 5
- •Варианты контрольной работы 6
- •Рекомендуемая литература
- •Интегральное исчисление функции одной переменной. Дифференциальные уравнения Часть 3
Варианты контрольнЫх работ
Каждый вариант контрольной работы 5 для студентов-заочников 1 курса всех специальностей содержит 5 задач, охватывающих материал по теме "Интегральное исчисление функции одной переменной". Каждый вариант контрольной работы 6 содержит 6 задач по теме "Дифференциальные уравнения".
Перед выполнением каждой контрольной работы студенту необходимо изучить теоретический материал по данной теме и закрепить его решением рекомендованных задач в соответствии с методическими указаниями, затем ознакомиться со справочным материалом и образцом выполнения примерного варианта контрольной работы.
Задания для всех вариантов общие; студенту следует выбрать из условия каждой задачи данные, необходимые для ее решения, в соответствии со своим вариантом. Оформление контрольных работ должно соответствовать установленным правилам и требованиям. Необходимые чертежи должны выполняться четко, с соответствующими подписями и комментариями (см. образец выполнения примерного варианта работы).
Интегрирование в контрольной работе 5 должно сопровождаться необходимыми ссылками на таблицы интегралов, их свойства, а также указанием метода интегрирования. При использовании замены переменной следует привести формулы замены всех элементов подинтегрального выражения через новую переменную.
Решение всех дифференциальных уравнений в контрольной работе 6 следует приводить подробно, указывая тип уравнения, способ получения решения и используемые методы интегрирования.
Варианты контрольной работы 5
Задача 1. Найти неопределенные интегралы:
№ варианта |
Интегралы |
n |
|
В примерах правильность полученных результатов проверить дифференцированием.
Задача 2. Вычислить несобственные интегралы или доказать их расходимость:
№ варианта |
Интегралы |
n |
а)
|
Задача 3. Вычислить с помощью определенного интеграла площадь плоской фигуры:
а) ограниченной в ДСК линиями l1 и l2;
б) ограниченной в ПСК линией l.
Сделать чертежи.
№ варианта |
Уравнения линий |
|
а) |
б) |
|
n |
|
|
Задача 4. Вычислить с помощью определенного интеграла объем тела, полученного вращением вокруг оси OX фигуры, ограниченной линиями l1 и l2. Сделать чертеж.
№ варианта |
Уравнения линий |
n |
|
Задача
5.
Вычислить с помощью определенного
интеграла длину дуги кривой, заданной
в ДСК уравнением y
= f(x),
где
.
№ варианта |
Уравнение кривой |
Промежуток |
n |
|
|
Варианты контрольной работы 6
Задача 1. Дано дифференциальное уравнение 1-го порядка и точка М. Определить тип дифференциального уравнения. Найти общее решение дифференциального уравнения, уравнение интегральной кривой, проходящей через точку М и уравнения еще 4-х интегральных кривых (любых). Построить все эти кривые в системе координат.
№ варианта |
Дифференциальное уравнение |
Точка |
1 |
|
M(–2; 4) |
2 |
|
M(0; 3) |
3 |
|
M |
4 |
|
M(0; 1) |
5 |
|
M(1; 2) |
6 |
|
M |
7 |
|
M(0; –1) |
8 |
|
M(0; 1) |
9 |
|
M(2; 1) |
10 |
|
M(–1; 2) |
Задача 2. Дано дифференциальное уравнение 1-го порядка. Определить тип дифференциального уравнения и найти его общее решение.
№ варианта |
Дифференциальное уравнение |
№ варианта |
Дифференциальное уравнение |
1 |
|
6 |
|
2 |
|
7 |
|
3 |
|
8 |
|
4 |
|
9 |
|
5 |
|
10 |
|
Задача 3. Дано дифференциальное уравнение 2-го порядка и начальные условия. Определить тип дифференциального уравнения и найти его частное решение, удовлетворяющее заданным начальным условиям.
№ варианта |
Дифференциальное уравнение |
Начальные условия |
1 |
|
|
2 |
|
|
3 |
|
|
4 |
|
|
5 |
|
|
6 |
|
|
7 |
|
|
8 |
|
|
9 |
|
|
10 |
|
|
Задача 4. Дано дифференциальное уравнение 2-го порядка. Определить тип дифференциального уравнения и найти его общее решение, используя метод вариации произвольных постоянных.
№ варианта |
Дифференциальное уравнение |
№ варианта |
Дифференциальное уравнение |
1 |
|
6 |
|
2 |
|
7 |
|
3 |
|
8 |
|
4 |
|
9 |
|
5 |
|
10 |
|
Задача 5. Дано дифференциальное уравнение 2-го порядка. Определить тип дифференциального уравнения и найти его общее решение, используя метод неопределенных коэффициентов.
№ варианта |
Дифференциальное уравнение |
№ варианта |
Дифференциальное уравнение |
1 |
|
6 |
|
2 |
|
7 |
|
3 |
|
8 |
|
4 |
|
9 |
|
5 |
|
10 |
|
Задача 6. Дана система линейных дифференциальных уравнений 1-го порядка. Найти общее решение системы методом повышения порядка.
№ варианта |
Система дифференциальных уравнений |
№ варианта |
Система дифференциальных уравнений |
1 |
|
6 |
|
2 |
|
7 |
|
3 |
|
8 |
|
4 |
|
9 |
|
5 |
|
10 |
|

;
б)