Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математика ч.3 методичка.doc
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
3.76 Mб
Скачать

Варианты контрольнЫх работ

Каждый вариант контрольной работы 5 для студентов-заочников 1 курса всех специальностей содержит 5 задач, охватывающих материал по теме "Интегральное исчисление функции одной переменной". Каждый вариант контрольной работы 6 содержит 6 задач по теме "Дифференциальные уравнения".

Перед выполнением каждой контрольной работы студенту необходимо изучить теоретический материал по данной теме и закрепить его решением рекомендованных задач в соответствии с методическими указаниями, затем ознакомиться со справочным материалом и образцом выполнения примерного варианта контрольной работы.

Задания для всех вариантов общие; студенту следует выбрать из условия каждой задачи данные, необходимые для ее решения, в соответствии со своим вариантом. Оформление контрольных работ должно соответствовать установленным правилам и требованиям. Необходимые чертежи должны выполняться четко, с соответствующими подписями и комментариями (см. образец выполнения примерного варианта работы).

Интегрирование в контрольной работе 5 должно сопровождаться необходимыми ссылками на таблицы интегралов, их свойства, а также указанием метода интегрирования. При использовании замены переменной следует привести формулы замены всех элементов подинтегрального выражения через новую переменную.

Решение всех дифференциальных уравнений в контрольной работе 6 следует приводить подробно, указывая тип уравнения, способ получения решения и используемые методы интегрирования.

Варианты контрольной работы 5

Задача 1. Найти неопределенные интегралы:

варианта

Интегралы

n

; ;

;

В примерах правильность полученных результатов проверить дифференцированием.

Задача 2. Вычислить несобственные интегралы или доказать их расходимость:

варианта

Интегралы

n

а) ; б)

Задача 3. Вычислить с помощью определенного интеграла площадь плоской фигуры:

а) ограниченной в ДСК линиями l1 и l2;

б) ограниченной в ПСК линией l.

Сделать чертежи.

варианта

Уравнения линий

а)

б)

n

Задача 4. Вычислить с помощью определенного интеграла объем тела, полученного вращением вокруг оси OX фигуры, ограниченной линиями l1 и l2. Сделать чертеж.

варианта

Уравнения линий

n

Задача 5. Вычислить с помощью определенного интеграла длину дуги кривой, заданной в ДСК уравнением y = f(x), где .

варианта

Уравнение кривой

Промежуток

n

Варианты контрольной работы 6

Задача 1. Дано дифференциальное уравнение 1-го порядка и точка М. Определить тип дифференциального уравнения. Найти общее решение дифференциального уравнения, уравнение интегральной кривой, проходящей через точку М и уравнения еще 4-х интегральных кривых (любых). Построить все эти кривые в системе координат.

варианта

Дифференциальное уравнение

Точка

1

M(–2; 4)

2

M(0; 3)

3

M

4

M(0; 1)

5

M(1; 2)

6

M

7

M(0; –1)

8

M(0; 1)

9

M(2; 1)

10

M(–1; 2)

Задача 2. Дано дифференциальное уравнение 1-го порядка. Определить тип дифференциального уравнения и найти его общее решение.

варианта

Дифференциальное уравнение

варианта

Дифференциальное уравнение

1

6

2

7

3

8

4

9

5

10

Задача 3. Дано дифференциальное уравнение 2-го порядка и начальные условия. Определить тип дифференциального уравнения и найти его частное решение, удовлетворяющее заданным начальным условиям.

варианта

Дифференциальное уравнение

Начальные условия

1

2

3

4

5

6

7

8

9

10

Задача 4. Дано дифференциальное уравнение 2-го порядка. Определить тип дифференциального уравнения и найти его общее решение, используя метод вариации произвольных постоянных.

варианта

Дифференциальное уравнение

варианта

Дифференциальное уравнение

1

6

2

7

3

8

4

9

5

10

Задача 5. Дано дифференциальное уравнение 2-го порядка. Определить тип дифференциального уравнения и найти его общее решение, используя метод неопределенных коэффициентов.

варианта

Дифференциальное уравнение

варианта

Дифференциальное уравнение

1

6

2

7

3

8

4

9

5

10

Задача 6. Дана система линейных дифференциальных уравнений 1-го порядка. Найти общее решение системы методом повышения порядка.

варианта

Система дифференциальных уравнений

варианта

Система дифференциальных уравнений

1

6

2

7

3

8

4

9

5

10