- •О.И. Ефимов
- •И.Л. Кузнецов
- •Содержание (часть 1)
- •Тема 1. Введение и общие положения………………………………………..5
- •Тема 2. Методология анализа надежности и долговечности сооружений 13
- •(Часть 2)
- •Тема 3: Элементы теории усталости. Усталостное разрушение
- •Тема 4: Основы теории надежности. Приложение ее к вопросам прочности
- •Тема 5: Задачи и вероятностные методы их решения на основе статистического моделирования случайных величин и случайных процессов…………………………………………………………………… 122
- •Тема 1 «введение и общие положения»
- •Тема 2 «методология анализа надежности и долговечности сооружений»
- •Понятия и математический аппарат, используемые в вероятностных методах см
- •3.1. Одномерная случайная величина (с.В.)
- •3.2. Случайная векторная величина двух измерений
- •3.3. Числовые характеристики распределения системы двух случайных величин
- •. Функции случайных величин
- •Характеристика безопасности
- •Из (3.13) следует, что
- •Можно записать и так
- •Пример 2
- •Математическое ожидание несущей способности
- •Тогда вероятность разрушения:
- •Вероятность неразрушения:
- •Нижний предел ожидаемого значения коэффициента запаса
- •Сочетания прочностных свойств. Метод статистической линеаризации
- •Характеристики нагрузок и воздействий Классификация нагрузок
- •По продолжительности действия и частоте появления действую-щий сНиП 2.01.07-85* разделяет нагрузки на постоянные и временные (длительные, кратковременные, особые).
- •Тогда вероятность разрушения
- •Вероятность неразрушения
- •Лекция 7. Нагрузки. Нагрузки как случайные величины. Снеговые нагрузки
- •Характеристики снеговых районов для новой карты районирования территории России по сНиП 2.01.07-85* (с осени 2003 г.)
- •Ветровая нагрузка
- •Превышение нагрузкой заданного уровня
- •Статистический характер прочности Нормативное сопротивление
- •9.2. Влияние износа и изменения прочности во времени
- •Тема 3: Элементы теории усталости. Усталостное разрушение как случайный процесс
- •Усталостное разрушение. Механизм усталостного разрушения
- •Основные термины
- •Циклы напряжений. Характеристики цикла.
- •Характеристики цикла напряжений.
- •Разновидности циклов напряжений
- •1.3. Характеристики сопротивления усталости при регулярном нагружении
- •Кривые Велера
- •Разновидности уравнений кривых усталости
- •Факторы, влияющие на сопротивление разрушению
- •Природа усталостного разрушения.
- •Механизм усталостного разрушения
- •Масштабный эффект
- •Вероятностный характер явления усталости
- •Определение величины предела выносливости. Предел ограниченной выносливости
- •Расчеты на прочность при одноосном напряженном состоянии и чистом сдвиге (изгибе, растяжении и кручении)
- •Тема 4: Основы теории надежности. Приложение ее к вопросам прочности
- •Основные понятия
- •Вероятность безотказной работы, плотность распределения и интенсивность отказов
- •Основное уравнение теории надежности
- •Общая закономерность изменения интенсивности отказов по времени наработки
- •Прогнозируемая вероятность безотказной работы
- •Экспоненциальный закон надежности
- •Нормальное распределение времени безотказной работы
- •Распределение вейбулла для времени безотказной работы
- •Надежность системы последовательных элементов
- •Надежность системы параллельных элементов
- •Количественные показатели надежности
- •Задачи теории надежности в приложении ее к вопросам прочности сооружений запасы длительной прочности при работе на различных режимах
- •Запасы выносливости при работе на различных режимах
- •Экспериментальное определение.
- •Вероятность разрушения и запасы прочности
- •Вероятность разрушения
- •Вероятность разрушения при произвольных законах распределения напряжений и пределов прочности
- •Доверительные пределы для вероятности разрушения.
- •Тема 5: Задачи и вероятностные методы их решения на основе статистического моделирования случайных величин и случайных процессов
- •Статистические запасы прочности
- •Случайные процессы и их основные статистические характеристики
- •Расчет на прочность при нерегулярной переменной нагруженности
- •Спектральные плотности случайных процессов
- •Определение средней долговечности при действии циклических напряжений со случайными амплитудами
- •Эргодичность случайного процесса
- •Основные методы вероятностного расчета строительных конструкций
- •Коэффициенты запаса в практических расчетах.
- •Общая характеристика методов моделирования случайных величин
- •Статистические запасы прочности
- •Статистический имитационный метод [6]:
- •Пример применения метода статистического моделирования в решении других задач динамики и статики сооружений [6].
- •Статистическое моделирование работы растянутого стержня из сосны
- •I. Случайные события. Основные формулы
- •II. Случайные величины. Основные формулы
- •III. Распределения случайных величин. Основные формулы онлайн
- •24. Пуассоновское распределение (дискретное)
- •25. Показательное распределение (непрерывное)
- •26. Равномерное распределение (непрерывное)
- •27. Нормальное распределение или распределение Гаусса (непрерывное)
- •IV. Другие формулы по теории вероятностей
- •Структура таблицы
- •Примеры построения доверительных интервалов
- •Доверительный интервал для математического ожидания при известной дисперсии
- •Доверительный интервал для математического ожидания при неизвестной дисперсии
- •Доверительный интервал для дисперсии при известном математическом ожидании
- •Доверительный интервал для дисперсии при неизвестном математическом ожидании
- •Доверительный интервал для среднего квадратичного отклонения
- •Доверительный интервал для вероятности биномиального распределения
- •420043, Г. Казань, ул. Зеленая, д. 1
Общая характеристика методов моделирования случайных величин
Под моделированием
случайной величины (СВ)
принято
понимать процесс получения на ЭВМ ее
выборочных значений
.
Величины
статистически
независимы и имеют одинаковое
распределение вероятностей,
совпадающее с распределением СВ
.
Практически любая задача статистического
моделирования содержит в качестве
самостоятельного этапа получение
реализаций СВ с заданными законами
распределения.
Центральная предельная теорема теории вероятности.
Случайная величина, рассеивание значений которой обусловлено различными равнозначными причинами, имеет нормальный закон распределения вероятностей.
Исходным материалом для формирования на ЭВМ СВ с различными законами распределения служат равномерно распределенные в интервале (0, 1) случайные числа, которые вырабатываются на ЭВМ программным датчиком случайных чисел. Программы для получения псевдослучайных величин с равномерным законом распределения входят в математическое обеспечение современных ЭВМ и здесь не приводятся.
Основные методы моделирования СВ, применяемые при моделировании такие как методы нелинейного преобразования, суперпозиции, Неймана, кусочной аппроксимации дают общие приемы получения СВ с заданным законом распределения из равномерно распределенных случайных чисел и моделирования случайных процессов (СП).
Статистические запасы прочности
Прочность — способность детали сопротивляться разрушению — оценивается несколькими способами а) с помощью допускаемых напряжений б) запасами прочности в) статистическими запасами прочности. Статистические запасы прочности являются более обоснованными характеристиками прочностной надежности, в особенности для отказов конструкций с тяжелыми последствиями.
Статистические запасы прочности, как и обычные, имеют условное значение. Их используют как критерии сравнения надежности вновь создаваемых изделий с изделиями, удовлетворительно эксплуатируемыми. Параметры этих распределений однозначно связаны с математическим ожиданием, дисперсией и коэффициентом вариации, что позволяет сопоставить их особенности вдали от центра рассеяния. Для этого принимаются некоторые фиксированные значения М (х) и Q (х), определяются соответствующие параметры распределений и вычисляются вероятность разрушения и статистический запас прочности в сопоставимых условиях — одинаковых уровнях значимости и доверия при определении экстремальных расчетных значений предела выносливости и действующих напряжений.
Таким образом, задача цифрового моделирования СП формулируется как задача нахождения алгоритмов (по возможности наиболее простых), позволяющих получать на ЭВМ дискретные реализации (выборочные функции) моделируемых процессов. Это самостоятельная и довольно сложная задача синтеза дискретных СП, имитирующих непрерывные процессы с заданными статистическими характеристиками. Она решается путем отыскания удобных для реализации на ЭВМ линейных и нелинейных преобразований, с помощью которых можно превратить независимые равномерно или нормально распределенные случайные числа, вырабатываемые датчиком случайных чисел, в случайные последовательности с требуемыми вероятностными свойствами.
Наиболее простой и практически пригодный метод определения статистических запасов прочности состоит в следующем. Минимальные характеристики прочности и максимальные значения напряжений устанавливают в соответствии с нормированным уровнем значимости и доверительной вероятности
Применение статистического моделирования СВ при расчетах строительных конструкций [6]:
