- •О.И. Ефимов
- •И.Л. Кузнецов
- •Содержание (часть 1)
- •Тема 1. Введение и общие положения………………………………………..5
- •Тема 2. Методология анализа надежности и долговечности сооружений 13
- •(Часть 2)
- •Тема 3: Элементы теории усталости. Усталостное разрушение
- •Тема 4: Основы теории надежности. Приложение ее к вопросам прочности
- •Тема 5: Задачи и вероятностные методы их решения на основе статистического моделирования случайных величин и случайных процессов…………………………………………………………………… 122
- •Тема 1 «введение и общие положения»
- •Тема 2 «методология анализа надежности и долговечности сооружений»
- •Понятия и математический аппарат, используемые в вероятностных методах см
- •3.1. Одномерная случайная величина (с.В.)
- •3.2. Случайная векторная величина двух измерений
- •3.3. Числовые характеристики распределения системы двух случайных величин
- •. Функции случайных величин
- •Характеристика безопасности
- •Из (3.13) следует, что
- •Можно записать и так
- •Пример 2
- •Математическое ожидание несущей способности
- •Тогда вероятность разрушения:
- •Вероятность неразрушения:
- •Нижний предел ожидаемого значения коэффициента запаса
- •Сочетания прочностных свойств. Метод статистической линеаризации
- •Характеристики нагрузок и воздействий Классификация нагрузок
- •По продолжительности действия и частоте появления действую-щий сНиП 2.01.07-85* разделяет нагрузки на постоянные и временные (длительные, кратковременные, особые).
- •Тогда вероятность разрушения
- •Вероятность неразрушения
- •Лекция 7. Нагрузки. Нагрузки как случайные величины. Снеговые нагрузки
- •Характеристики снеговых районов для новой карты районирования территории России по сНиП 2.01.07-85* (с осени 2003 г.)
- •Ветровая нагрузка
- •Превышение нагрузкой заданного уровня
- •Статистический характер прочности Нормативное сопротивление
- •9.2. Влияние износа и изменения прочности во времени
- •Тема 3: Элементы теории усталости. Усталостное разрушение как случайный процесс
- •Усталостное разрушение. Механизм усталостного разрушения
- •Основные термины
- •Циклы напряжений. Характеристики цикла.
- •Характеристики цикла напряжений.
- •Разновидности циклов напряжений
- •1.3. Характеристики сопротивления усталости при регулярном нагружении
- •Кривые Велера
- •Разновидности уравнений кривых усталости
- •Факторы, влияющие на сопротивление разрушению
- •Природа усталостного разрушения.
- •Механизм усталостного разрушения
- •Масштабный эффект
- •Вероятностный характер явления усталости
- •Определение величины предела выносливости. Предел ограниченной выносливости
- •Расчеты на прочность при одноосном напряженном состоянии и чистом сдвиге (изгибе, растяжении и кручении)
- •Тема 4: Основы теории надежности. Приложение ее к вопросам прочности
- •Основные понятия
- •Вероятность безотказной работы, плотность распределения и интенсивность отказов
- •Основное уравнение теории надежности
- •Общая закономерность изменения интенсивности отказов по времени наработки
- •Прогнозируемая вероятность безотказной работы
- •Экспоненциальный закон надежности
- •Нормальное распределение времени безотказной работы
- •Распределение вейбулла для времени безотказной работы
- •Надежность системы последовательных элементов
- •Надежность системы параллельных элементов
- •Количественные показатели надежности
- •Задачи теории надежности в приложении ее к вопросам прочности сооружений запасы длительной прочности при работе на различных режимах
- •Запасы выносливости при работе на различных режимах
- •Экспериментальное определение.
- •Вероятность разрушения и запасы прочности
- •Вероятность разрушения
- •Вероятность разрушения при произвольных законах распределения напряжений и пределов прочности
- •Доверительные пределы для вероятности разрушения.
- •Тема 5: Задачи и вероятностные методы их решения на основе статистического моделирования случайных величин и случайных процессов
- •Статистические запасы прочности
- •Случайные процессы и их основные статистические характеристики
- •Расчет на прочность при нерегулярной переменной нагруженности
- •Спектральные плотности случайных процессов
- •Определение средней долговечности при действии циклических напряжений со случайными амплитудами
- •Эргодичность случайного процесса
- •Основные методы вероятностного расчета строительных конструкций
- •Коэффициенты запаса в практических расчетах.
- •Общая характеристика методов моделирования случайных величин
- •Статистические запасы прочности
- •Статистический имитационный метод [6]:
- •Пример применения метода статистического моделирования в решении других задач динамики и статики сооружений [6].
- •Статистическое моделирование работы растянутого стержня из сосны
- •I. Случайные события. Основные формулы
- •II. Случайные величины. Основные формулы
- •III. Распределения случайных величин. Основные формулы онлайн
- •24. Пуассоновское распределение (дискретное)
- •25. Показательное распределение (непрерывное)
- •26. Равномерное распределение (непрерывное)
- •27. Нормальное распределение или распределение Гаусса (непрерывное)
- •IV. Другие формулы по теории вероятностей
- •Структура таблицы
- •Примеры построения доверительных интервалов
- •Доверительный интервал для математического ожидания при известной дисперсии
- •Доверительный интервал для математического ожидания при неизвестной дисперсии
- •Доверительный интервал для дисперсии при известном математическом ожидании
- •Доверительный интервал для дисперсии при неизвестном математическом ожидании
- •Доверительный интервал для среднего квадратичного отклонения
- •Доверительный интервал для вероятности биномиального распределения
- •420043, Г. Казань, ул. Зеленая, д. 1
Расчеты на прочность при одноосном напряженном состоянии и чистом сдвиге (изгибе, растяжении и кручении)
При переменных нагрузках обычно производится поверочный расчет на прочность, причем за основу для определения запаса прочности принимается схематизированная диаграмма предельных амплитуд σT от σm см. рис. 13.7).
Рис. 13.7
Эта диаграмма построена по результатам испытания стандартных образцов без концентраторов напряжений и со шлифованной или полированной поверхностью. Поэтому при расчете должно быть дополнительно учтено влияние на сопротивление усталости детали всех указанных выше факторов. Влияние концентрации напряжений на сопротивление усталости учитывается эффективными коэффициентами Kσ, масштабный эффект — коэффициентом Kd, а состояние поверхности — коэффициентом K.
Так как концентрация напряжений, масштабный фактор и состояние поверхности мало сказываются на прочности деталей из пластического материала при постоянных напряжениях, принято эффект концентрации, состояния поверхности и масштабного фактора относить к переменной составляющей цикла σm .
Таким образом, если задан рабочий цикл в детали, характеризуемый переменным напряжением σa и постоянным средним напряжением σT, то цикл в стандартном образце, равнопрочном данной детали, будет определяться средним напряжением
и переменным напряжением
Предположим, что при возрастании нагрузок на деталь коэффициент асимметрии R не изменяется, т. е. циклы изменения напряжений в детали остаются подобными. Тогда эти напряжения в стандартном образце, определяемые выражениями выше, следует также пропорционально увеличивать; при увеличении нагрузок в n раз получим предельные значения nσm.
Значения σa определяются по диаграмме предельных напряжений (рис. 13.7) координатами точки М пересечения с ломаной ABC луча, проведенного из начала координат под углом α, тангенс которого
(13.2)
Запас прочности nσ находится как отношение
(13.3)
или графически как отношение отрезков (см. рис. 13.7):
(13.4)
Нетрудно также получить аналитические выражения для запаса прочности, причем таких выражений будет два, так как луч OM может пересечь как прямую АС, так и прямую BC.
Уравнение прямой AC можно записать как уравнение прямой c угловым коэффициентом φ (см. рис. 13.7)
(13.5)
где
(13.6)
Отсюда после несложных преобразований находим выражение для n:
(13.7)
Уравнение прямой BC
(13.8)
Следовательно, для второго участка диаграммы
(13.9
Из двух значений nϭ, определяемых этими формулами, искомым запасом прочности будет меньшее значение.
В случае кручения запас прочности nτ определяется аналогично; расчетные формулы получатся путем замены во всех предыдущих выражениях ϭ на τ и Kϭ на Kτ .
Тема 4: Основы теории надежности. Приложение ее к вопросам прочности
Лекция 14. Основные понятия. Надежность, мера надежности, долговечность и нормативный ресурс.
