- •О.И. Ефимов
- •И.Л. Кузнецов
- •Содержание (часть 1)
- •Тема 1. Введение и общие положения………………………………………..5
- •Тема 2. Методология анализа надежности и долговечности сооружений 13
- •(Часть 2)
- •Тема 3: Элементы теории усталости. Усталостное разрушение
- •Тема 4: Основы теории надежности. Приложение ее к вопросам прочности
- •Тема 5: Задачи и вероятностные методы их решения на основе статистического моделирования случайных величин и случайных процессов…………………………………………………………………… 122
- •Тема 1 «введение и общие положения»
- •Тема 2 «методология анализа надежности и долговечности сооружений»
- •Понятия и математический аппарат, используемые в вероятностных методах см
- •3.1. Одномерная случайная величина (с.В.)
- •3.2. Случайная векторная величина двух измерений
- •3.3. Числовые характеристики распределения системы двух случайных величин
- •. Функции случайных величин
- •Характеристика безопасности
- •Из (3.13) следует, что
- •Можно записать и так
- •Пример 2
- •Математическое ожидание несущей способности
- •Тогда вероятность разрушения:
- •Вероятность неразрушения:
- •Нижний предел ожидаемого значения коэффициента запаса
- •Сочетания прочностных свойств. Метод статистической линеаризации
- •Характеристики нагрузок и воздействий Классификация нагрузок
- •По продолжительности действия и частоте появления действую-щий сНиП 2.01.07-85* разделяет нагрузки на постоянные и временные (длительные, кратковременные, особые).
- •Тогда вероятность разрушения
- •Вероятность неразрушения
- •Лекция 7. Нагрузки. Нагрузки как случайные величины. Снеговые нагрузки
- •Характеристики снеговых районов для новой карты районирования территории России по сНиП 2.01.07-85* (с осени 2003 г.)
- •Ветровая нагрузка
- •Превышение нагрузкой заданного уровня
- •Статистический характер прочности Нормативное сопротивление
- •9.2. Влияние износа и изменения прочности во времени
- •Тема 3: Элементы теории усталости. Усталостное разрушение как случайный процесс
- •Усталостное разрушение. Механизм усталостного разрушения
- •Основные термины
- •Циклы напряжений. Характеристики цикла.
- •Характеристики цикла напряжений.
- •Разновидности циклов напряжений
- •1.3. Характеристики сопротивления усталости при регулярном нагружении
- •Кривые Велера
- •Разновидности уравнений кривых усталости
- •Факторы, влияющие на сопротивление разрушению
- •Природа усталостного разрушения.
- •Механизм усталостного разрушения
- •Масштабный эффект
- •Вероятностный характер явления усталости
- •Определение величины предела выносливости. Предел ограниченной выносливости
- •Расчеты на прочность при одноосном напряженном состоянии и чистом сдвиге (изгибе, растяжении и кручении)
- •Тема 4: Основы теории надежности. Приложение ее к вопросам прочности
- •Основные понятия
- •Вероятность безотказной работы, плотность распределения и интенсивность отказов
- •Основное уравнение теории надежности
- •Общая закономерность изменения интенсивности отказов по времени наработки
- •Прогнозируемая вероятность безотказной работы
- •Экспоненциальный закон надежности
- •Нормальное распределение времени безотказной работы
- •Распределение вейбулла для времени безотказной работы
- •Надежность системы последовательных элементов
- •Надежность системы параллельных элементов
- •Количественные показатели надежности
- •Задачи теории надежности в приложении ее к вопросам прочности сооружений запасы длительной прочности при работе на различных режимах
- •Запасы выносливости при работе на различных режимах
- •Экспериментальное определение.
- •Вероятность разрушения и запасы прочности
- •Вероятность разрушения
- •Вероятность разрушения при произвольных законах распределения напряжений и пределов прочности
- •Доверительные пределы для вероятности разрушения.
- •Тема 5: Задачи и вероятностные методы их решения на основе статистического моделирования случайных величин и случайных процессов
- •Статистические запасы прочности
- •Случайные процессы и их основные статистические характеристики
- •Расчет на прочность при нерегулярной переменной нагруженности
- •Спектральные плотности случайных процессов
- •Определение средней долговечности при действии циклических напряжений со случайными амплитудами
- •Эргодичность случайного процесса
- •Основные методы вероятностного расчета строительных конструкций
- •Коэффициенты запаса в практических расчетах.
- •Общая характеристика методов моделирования случайных величин
- •Статистические запасы прочности
- •Статистический имитационный метод [6]:
- •Пример применения метода статистического моделирования в решении других задач динамики и статики сооружений [6].
- •Статистическое моделирование работы растянутого стержня из сосны
- •I. Случайные события. Основные формулы
- •II. Случайные величины. Основные формулы
- •III. Распределения случайных величин. Основные формулы онлайн
- •24. Пуассоновское распределение (дискретное)
- •25. Показательное распределение (непрерывное)
- •26. Равномерное распределение (непрерывное)
- •27. Нормальное распределение или распределение Гаусса (непрерывное)
- •IV. Другие формулы по теории вероятностей
- •Структура таблицы
- •Примеры построения доверительных интервалов
- •Доверительный интервал для математического ожидания при известной дисперсии
- •Доверительный интервал для математического ожидания при неизвестной дисперсии
- •Доверительный интервал для дисперсии при известном математическом ожидании
- •Доверительный интервал для дисперсии при неизвестном математическом ожидании
- •Доверительный интервал для среднего квадратичного отклонения
- •Доверительный интервал для вероятности биномиального распределения
- •420043, Г. Казань, ул. Зеленая, д. 1
Масштабный эффект
Если из одного и того же материала изготовить несколько отличающихся по диаметру партий образцов, то после испытания на усталость обнаруживается, что предел выносливости с увеличением диаметра уменьшается. Эта зависимость носит асимптотический характер. По виду кривой можно заключить, что для очень больших образцов, которые мы уже ни изготовить, ни испытать не можем, снижение предела выносливости с увеличением диаметра прекращается.
Снижение предела выносливости с увеличением размеров детали получило название масштабного эффекта. Этот эффект следует рассматривать как очевидное следствие того, что максимальное напряжение в образце, а тем более в детали, не характеризует полностью процесс усталостного разрушения, а предел выносливости, как уже указывалось, не выражает в чистом виде свойств материала. Статистический характер возникновения микротрещин тесно связан с неоднородностью напряженного состояния в пределах малых объемов, и геометрическое подобие, как критерий для оценки усталостного разрушения, потребовало бы геометрического подобия всех кристаллов в структуре и даже геометрического подобия их строения. Но эти условия при переходе от малого образца к большому не соблюдаются. Естественно поэтому, что не сохраняя полного геометрического подобия, мы не получаем и силового подобия.
Лекция 13. Основы статистической теории усталостного разрушения и примеры ее применения для исследований прочности. Оценка долговечности при различных гипотезах накопления усталостных повреждений.
Вероятностный характер явления усталости
Усталостное разрушение и особенно, его первая стадия носит ярко выраженный статистический характер, так как зависит от индивидуальных особенностей поликристаллического строения каждого образца. Так, даже при самом строгом соблюдении однородности условий испытаний образцы из одного и того же материала при одинаковых максимальных напряжениях разрушаются, как показывают эксперименты, при существенно различных количествах циклов. Разброс разрушающих величин циклов может достигать при этом двух и более порядков. Величина разброса увеличивается с уменьшением уровня максимальных напряжений и соответствующим увеличением количества циклов, необходимых для разрушения образца.
В последние годы интенсивно развиваются вероятностные методы расчетов на прочность при напряжениях, переменных во
Рис. 13.1 Рис. 13.2
времени. Эти методы основываются на вероятностной оценке рассеяния усталостных характеристик материала, определяемых путем испытания достаточно большой партии совершенно идентичных образцов на различных уровнях максимальных напряжений цикла.
Логарифмы разрушающих чисел циклов для всех образцов, испытанных на каждом уровне максимальных напряжений, располагаются в возрастающем порядке. Полученные таким образом вариационные ряды
служат исходной информацией для вероятностной оценки усталостных характеристик материала. Вероятность разрушения Р при данном на каждом уровне напряжений σmax, приблизительно равная отношению числа i образцов, разрушившихся при числе циклов, меньшем N к числу всех n образцов испытываемой партии, доведенных до разрушения на данном уровне σmax, вычисляется по формуле
(13.1)
Полученная таким образом зависимость между максимальными напряжениями σmax цикла, долговечностью N и вероятностью разрушения Р представляется в виде семейства кривых усталости, построенных для различных вероятностей разрушения Р (рис. 13.1). Кривая, построенная по средним значениям экспериментально найденных долговечностей N (см. рис. 13.2), соответствует напряжениям, вызывающим разрушения при заданном числе циклов с вероятностью, близкой к 0,5.
