Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
фотог все.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
164.73 Кб
Скачать
  1. Лазерные съемочные системы

Лазерные съёмочные системы относятся к активным съёмочным системам, работающим в оптическом диапазоне. В основе лазерной съёмки заложен принцип работы светодальномера без отражателя- лазерная локация. Отражателем является поверхность снимаемого объекта. В качестве облучателя используется полупроводниковый лазер, генерирующий излучение в ближней ИК-зоне в импульсном режиме. С помощью лазера производится направленное облучение поверхности. Сигнал, отражённый от элементарной площадки земной поверхности (объекта), принимается оптической системой. При каждом элементарном измерении в процессе сканирования регистрируется наклонная дальность до площадки отражения и направление относительно осей системы координат лазерного локатора. Положение локатора в геодезической системе координат (X,Y,Z) определяется бортовым GPS- приёмником. Углы наклона и разворота зондирующего луча относительно осей геодезической системы координат определяется с помощью инерциальной аппаратуры. Это позволяет получить после обработки результатов измерений геодезические координаты элемента поверхности, вызвавшего отражение зондирующего луча. Точность пространственных координат обратно пропорциональна высоте съёмки. Результатом съёмки является т р ё х м е р н о е ц и ф р о в о е изображение. Получение изображения лазерным сканером производится в два этапа. На первом выполняется регистрация результатов измерений множества элементарных площадок (точек) – получения так называемого «облака точек» – каждая из которых имеет координаты X,Y,Z. Обработка результатов измерений может производиться на борту летательного аппарата. Лазерные съёмочные системы применяют для построения профилей рельефа на территориях закрытых лесами и создания цифровой модели рельефа местности. Их применение эффективно при обследовании линий электропередач. При съёмке городов и населённых пунктов получаемое трёхмерное изображение позволяет успешнее проводить работы по организации территорий. Или, например, оптимизировать размещение приёмопередатчиков мобильной телефонной связи для достижения уверенного приёма сигналов. Помимо лазерных сканеров, используемых с воздушных и космических носителей, существуют наземные лазерные сканеры. Принцип работы этих съёмочных систем аналогичен рассмотренным сканерам. Изображения, получаемые ими, применяются для изучения деформаций зданий и промышленных сооружений, составления фронтальных планов сложных архитектурных сооружений и т.п.

  1. Радиофизические съемочные системы.

заключается в зондировании земной поверхности радиосигналом. На борту носителя -- самолета или спут­ника устанавливается радиолокатор -- активный микроволновый датчик, способный передавать и принимать поляризованные радио­волны в заданном диапазоне частот. Развертка сигнала производится по принципу сканера, т.е. переход от одной строки к другой идет за счет перемещения носителя. Количество энергии, возвращенной на антенну локатора, называется "обратным рассеянием". Каждый пик­сел радиолокационного снимка показывает суммарный коэффици­ент отражения данного участка поверхности, или мощность возвра­тившегося к антенне сигнала. Значения яркости пиксела могут быть преобразованы в удельную эффективную поверхность рассеяния (УЭПР) -- величину, использующуюся в различных физических моделях отраженных радиоволн. Высокая яркость пиксела означает, что большая часть сигнала вернулась к антенне, низкая -- наоборот.

Отличительная особенность радиолокационных изображений -- наличие так называемого спекл-шума.

По типу конструкции различают радиолокационные системы бокового обзора (РЛС БО) и с синтезированием апертуры антен­ны (РСА), обеспечивающие получение снимков с разным про­странственным разрешением.

В последние годы появились и приобретают все большее значе­ние видеосъемка и съемка цифровыми камерами, основанные на ис­пользовании волоконной оптики.

Радиолокационная съёмка заключается в зондировании земной поверхности радиосигналом. На борту носителя (самолёта или спутника) устанавливается радиолокатор - активный микроволновй датчик , способный передовать и принимать поляризованные радиоволны в заданном диапозоне частот. Развёртка сигнала производится по принципу сканера т. е. переход от одной страки к другой. Количество энергии возвращённой на антенну локатора называется (обратным рассеиванием) Каждый пиксель радиолокационного снимка показывает суммарный коэфициэнт отражения данного участка поверхности или мощность возвратившегося к антенне сигнала. В последние годы появились и приобретают всё большее значение видиосъёмка и съёмка цифровыми камерами, основанные на использование волоконной оптики.