- •Оглавление
- •1. Классификация технических каналов утечки информации
- •1.1. Структура технического канала утечки информации
- •1.2. Классификация технических каналов утечки информации
- •1.3. Понятие информационного сигнала
- •Модуляция сигналов
- •1.4. Опасные сигналы и их источники
- •2. Физические основы возникновения побочных электромагнитных излучений и наводок
- •2.1 Определение электромагнитного поля и его характеристики
- •2.6. Средства перехвата радиосигналов
- •2.7. Пэми персонального компьютера
- •3. Физические основы возникновения акустического (виброакустического) канала утечки речевой информации
- •3.1. Основные понятия в области акустики. Классификация акустических каналов утечки информации
- •4. Физические преобразователи
- •4.1 Характеристики физических преобразователей
- •4.2 Виды акустоэлектрических преобразователей
- •5.Физика оптико-электронного канала утечки информации
- •5.1.Классификация визуально-оптических куи
- •5.2 Характеристика оптических методов получения информации
- •5.3 Характеристики оптических приборов
- •350072, Г. Краснодар, ул. Московская, 2, кор. А
- •350000, Г. Краснодар, ул. Красная, 91
5.3 Характеристики оптических приборов
К оптическим приборам относятся: бинокли, телескопы, стереотрубы, приборы ночного видения (ПНВ), фото- и видеокамеры. Рассмотрим технические характеристики оптических приборов, которые используются для визуального наблюдения.
Выделяют несколько типов биноклей:
а) бинокль для астронома;
б) морские бинокли;
в) ночные бинокли;
г) цифровые бинокли;
д) бинокли для охоты;
е) военные бинокли.
Бинокль – это оптический прибор, с помощью которого производится наблюдение за удаленными объектами. Бинокль состоит из двух соединенных вместе зрительных труб, благодаря чему изображение получается стереоскопическим. Это делает наблюдение более комфортным и позволяет более точно оценить величину объекта и расстояние до него, а поскольку наш мозг приспособлен обрабатывать информацию максимально эффективно тогда, когда она поступает от обоих глаз, в бинокль можно разглядеть объект более детально, чем в зрительную (подзорную) трубу той же кратности.
Бинокль, как правило, состоит из оптической части, корпуса и механической системы. Театральные, а также самые дешевые бинокли изготавливаются по схеме Галилея: их оптическая система представляет собой сочетание выпуклой собирающей свет линзы (окуляр) и вогнутой рассеивающей линзы (объектив). Такие бинокли достаточно компактны, но их заметным недостатком являет малое поле зрения.
Рис. 5.4. Оптическая схема бинокля Галилея
Подавляющее большинство современных биноклей изготовлено по схеме Кеплера. Такие бинокли имеют собирающие линзы и в объективе, и в окуляре, а для того, чтобы получаемое изображение имело правильную ориентацию, между линзами бинокля помещают оборачивающие призмы.
Объектив – часть оптической системы, которая формирует изображение – может быть линзовым (то есть, состоять только из линз), зеркальным (представлять собой зеркало) либо зеркально-линзовым (состоять из линз и зеркал). Зеркальные и зеркально-линзовые бинокли, как правило, дешевле и легче линзовых биноклей, но заметно уступают им в качестве изображения. Насколько светлым будет изображение, получаемое при помощи бинокля, зависит от величины линзы его объектива, точнее, ее апертуры, входного отверстия, ограниченного оправой. Чем больше апертура бинокля, тем более светосильным он будет.
Окуляр – выходная линза бинокля – обращена к глазу наблюдателя. Для того, чтобы изображение имело как можно меньше искажений, окуляры биноклей делаются из нескольких элементов, каждый их которых изготовлен из 1-3 склеенных между собой линз.
Для производства окуляров биноклей высшего качества применяются особые оптические стекла с очень низкой дисперсией (ED - стекла).
Какими же характеристиками различаются эти модели?
Определяющее свойство бинокля - увеличение (кратность). Это отношение размера объекта в увеличенном биноклем виде к его размеру, видимому невооруженным глазом. Эта характеристика у современных биноклей располагается в диапазоне от 3х кратного увеличения (театральный бинокль) до 22-х кратного (тяжелый мощный бинокль обычно используется со штативом).
По увеличению бинокли можно разбить на группы:
малого увеличения (2-4 раза)
среднего увеличения (5-8 раз)
большого увеличения (10-22 раз).
Бинокли средней ценовой категории нередко оснащены окулярами, линзы которых содержат асферические элементы. Такие окуляры помогают исправить некоторые оптические аберрации, используя всего одну линзу. Это позволяет удешевить бинокль и сделать его более легким. В биноклях экстра-класса асферика не применяется.
Призменные оборачивающие системы бывают двух типов – Porro (порро) и Roof (руф, иначе крышеобразные призмы).
-
Рис. 5.5. Бинокль с Порро-призмами Nikon Action EX 8x40 CF
В биноклях с Порро-призмами используются двойные Z -образные призмы, вследствие чего оптическая ось такого бинокля «ломается» и его трубы имеют выступ. Благодаря тому, что оптические каналы биноклей с Порро-призмами достаточно широко разнесены в пространстве, такие бинокли обеспечивают яркое изображение с хорошей передачей объемности объекта наблюдения.
Рис. 5.6. Схема прохождения света через призму Аббе-Кёнига
|
Бинокли с руф-призмами более компактны, чем бинокли с Порро-призмами. В них практически не происходит излома оптической оси. В современных биноклях используются руф-призмы двух типов: Аббе-Кёнига и Шмидта-Пехана. Наиболее распространены бинокли с призмами Аббе-Кёнига. К преимуществам биноклей с руф-призмами можно отнести то, что вследствие особенностей их конструкции такие бинокли проще сделать герметичными, чем бинокли с Порро-призмами. Однако бинокли с руф-призмами, как правило, дороже биноклей с Порро-призмами, поскольку они сложнее последних в изготовлении. Кроме того, у биноклей с руф-призмами средней ценовой категории, как правило, менее яркое и менее контрастное изображение, чем у биноклей с Порро-призмами того же размера и той же кратности.
Рис. 5.7. Схема прохождения луча света сквозь призму Шмидта-Пехана
Для самых качественных биноклей призмы изготавливают из оптического стекла ВАК-4. Бинокли более низкой ценовой категории могут иметь призмы из стекла ВК7.
Фазокорректирующее покрытие применяется только у биноклей с руф-призмами (бинокли с Порро-призмами в них не нуждаются). В результате множественных внутренних отражений светового луча, происходящих внутри руф-призм, свет частично поляризуется. Между векторами поляризации возникает угол, называемый углом фазового сдвига. В последствии, когда два эти вектора складываются, результирующее изображение получается менее ярким и контрастным, чем у биноклей с Порро-призмами. Фазокорректирующее покрытие помогает сохранить яркость и контрастность изображения и его правильную цветопередачу.
Количество света, доносимого до глаз биноклем, зависит от особенностей просветляющего покрытия его оптики. Если бы оптика бинокля не имела просветляющего покрытия, то от любой поверхности стекло/воздух отражалось бы около 10% света.
Однослойное покрытие снижает потери света до 4%.
Многослойное покрытие помогает уменьшить их до 0,25% для каждой линзы и даже более того. Лучшие бинокли имеют светопропускание, равное 95-97%.
Очень важно, чтобы бинокль имел достаточно большой выходной зрачок. Выходной зрачок – это диаметр светового пучка, поступающего к глазу наблюдателя. Размер выходного зрачка определяется отношением апертуры бинокля, выраженной в мм, к его кратности. Если выходной зрачок бинокля мал (3-4 мм), то вести наблюдение с помощью такого бинокля можно будет только днем. В сумерках количества света, выходящего из него, окажется недостаточным, и изображение получится очень темным. Если предполагается вести наблюдение в условиях недостаточной освещенности, лучше выбирать бинокль с выходным зрачком в 7-8 мм. Если же у бинокля выходной зрачок оказывается больше этого значения, часть света будет теряться впустую.
Кратность (увеличение) бинокля – величина, которая показывает, во сколько раз данный бинокль увеличивает изображение предмета по сравнению с тем, каким он был бы виден невооруженным глазом. Как правило, кратности бинокля в 10-12х достаточно для того, чтобы вести полноценные наблюдения за Луной. Причем для наблюдений с помощью такого бинокля наблюдателю не потребуется штатив, так как изображение будет устойчиво. Если же увеличение у бинокля превышает это значение, то его изображение будет «прыгать». На его стабильность влияет незаметная на первый взгляд дрожь в руках наблюдателя. Поэтому бинокли с кратностью 16х и выше рекомендуется использовать только со штативом. Также следует учесть тот факт, что с увеличением кратности поле зрения бинокля уменьшается, то есть в бинокль с большой кратностью виден только узкий сектор пространства. Бинокли высокой кратности, как правило, предназначены для астрономических наблюдений. У них большая апертура (60-120 мм), и они весят более 3 кг. Поэтому удерживать их в руках более или менее длительное время часто бывает просто невозможно.
Рис. 5.8. Астрономический бинокль Miyauchi 26x100 "Galaxy" Bj-iCE APO
Кроме биноклей с постоянной кратностью, существуют бинокли с переменной кратностью (панкратические бинокли). Их увеличение может меняться от 7 до 35х и даже от 10 до 60х. Какой бы привлекательной не казалась идея заменить несколько биноклей одним, стоит хорошо подумать, прежде чем покупать такой бинокль. Панкратические бинокли довольно сложны в изготовлении. Изображение, получаемое с их помощью, всегда уступает по качеству изображению, получаемому с помощью бинокля с постоянной кратностью. Производителю бывает трудно сделать так, чтобы при смене кратности пучки света в обоих каналах бинокля оставались параллельны, изображение не вращалось вокруг своей оси и т.д. А большое число подвижных механических частей делает эти бинокли менее надежными, чем бинокли с постоянной кратностью.
Ночные бинокли (приборы ночного видения)
Эти приборы включают в себя электронно-оптический преобразователь (ЭОП), который усиливает яркость изображения в 900-50000раз. Таким образом, слабый отраженный от объекта свет проходит через объектив и создает изображение на катоде ЭОП, которое усиливается и проецируется желто-зеленом свечении на выходном экране преобразователя, а затем передается через окуляр на глаз наблюдателя.
Если говорить о какой-либо классификации ЭОП, то выделяют ЭОПы I, II, III поколения (а также промежуточные I+ и II+). Приборы I поколения обеспечивают достаточно хорошее качество изображения в условиях лунной или звездой ночи и, как правило, являются ПНВ гражданского назначения. Если же необходимо проводить наблюдения в полной темноте, то целесообразно воспользоваться приборами этого же поколения, но уже снабженными инфракрасным осветителем. Что касается ЭОП II поколения, то они обеспечивают усиление яркости в пределах 20000-30000 и используются в более качественных ПНВ.
Что касается сферы применения современных ПНВ, то она достаточно широка. Раньше ПНВ использовались в военных целях вооруженными силами, сейчас же они получили широкое распространение среди гражданского населения. Сейчас ПНВ используются в основном для следующих целей:
ночная охота для выслеживания (для производства точных выстрелов можно воспользоваться ночными прицелами);
охрана отдельных лиц, грузоперевозок, территории;
проведение спасательных операций в темное время суток;
ориентация на местности;
вождение автомобилей;
проведение ночной фото-видео съемки;
обеспечение правопорядка.
Рис. 5.9. Приборы ночного видения
Технические средства для проведения фото- и видео съемки
Основным элементом современной фото- и видео аппаратуры является ПЗС-ма́трица (сокр. от «прибор с зарядовой связью») или CCD-ма́трица (сокр. от англ. CCD, «Charge-Coupled Device») - специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию ПЗС - приборов с зарядовой связью.
ПЗС-матрицы выпускаются и активно используются компаниями Nikon, Canon, Sony, Fuji, Kodak, Matsushita, Philips и многими другими. В России ПЗС-матрицы сегодня разрабатывает и выпускает ЗАО "НПП «ЭЛАР», гор. С.-Петербург.
ПЗС-матрица (рисунок 5.10) состоит из поликремния, отделённого от кремниевой подложки, у которой при подаче напряжения через поликремневые затворы изменяются электрические потенциалы вблизи электродов.
До экспонирования обычно подачей определённой комбинации напряжений на электроды происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние.
Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции, тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя.
После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам.
Рис. 5.10. ПЗС-матрица
1 - Фотоны света, прошедшие через объектив фотоаппарата; 2 - Микролинза субпикселя; 3 - R - красный светофильтр субпикселя, фрагмент фильтра Байера; 4 - Прозрачный электрод из поликристаллического кремния или оксида олова; 5 - Изолятор (оксид кремния); 6 - Кремниевый канал n-типа. Зона генерации носителей (зона внутреннего фотоэффекта); 7 - Зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей; 8 - Кремниевая подложка p-типа;
В приборах с зарядовой связью преобразование фотона в электрон производится в результате внутреннего фотоэффекта: поглощения светового кванта кристаллической решёткой полупроводника с выделением носителей заряда. Это может быть либо пара «электрон + дырка», либо единичный носитель заряда – последнее происходит при использовании донорных либо акцепторных примесей в полупроводнике. Очевидно, что образовавшиеся носители заряда до момента считывания необходимо как-то сохранить.
Для этого основной материал ПЗС-матрицы – кремниевая подложка p-типа – оснащается каналами из полупроводника n-типа, над которыми из поликристаллического кремния изготавливаются прозрачные для фотонов электроды (рисунок 5.11). После подачи на такой электрод электрического потенциала в обеднённой зоне под каналом n-типа создаётся потенциальная яма, назначение которой – хранить заряд, «добываемый» посредством внутреннего фотоэффекта. Чем больше фотонов упадёт на ПЗС-элемент (пиксель) и превратится в электроны, тем выше будет заряд, накопленный ямой.
Рис. 5.11. Физические процессы в ПЗС-матрице
Чтобы получить «электронный негатив», необходимо считать заряд каждой потенциальной ямы матрицы. Данный заряд получил название фототок, его значение довольно мало и после считывания требует обязательного усиления.
Считывание заряда производится устройством, подключённым к самой крайней строке матрицы, которое называется последовательным регистром сдвига (рисунок 5.12). Данный регистр представляет собой строку из ПЗС-элементов, заряды которой считываются поочерёдно. При считывании заряда используется способность ПЗС-элементов к перемещению зарядов потенциальных ям – собственно, именно поэтому данные устройства называются приборами с зарядовой связью. Для этого используются электроды переноса (transfer gate), расположенные в промежутке между ПСЗ-элементами. На эти электроды подаются потенциалы, «выманивающие» заряд из одной потенциальной ямы и передающие его в другую.
При синхронной подаче потенциала на электроды переноса обеспечивается одновременный перенос всех зарядов строки справа налево (или слева направо) за один рабочий цикл. Оказавшийся «лишним» заряд поступает на выход ПЗС-матрицы. Таким образом, последовательный регистр сдвига преобразовывает заряды, поступающие на его вход в виде параллельных «цепочек», в последовательность электрических импульсов разной величины на выходе. Чтобы подать эти параллельные «цепочки» на вход последовательного регистра, опять-таки используется регистр сдвига, но на этот раз параллельный.
Рис. 5.12. Регистры ПЗС-матрицы
Фактически параллельным регистром является сама ПЗС-матрица, создающая посредством совокупности фототоков электронный «слепок» светового изображения. Матрица представляет собой множество последовательных регистров, называемых столбцами и синхронизированных между собой. В результате за рабочий цикл происходит синхронное «сползание» фототоков вниз, а оказавшиеся «лишними» заряды нижней строки матрицы поступают на вход последовательного регистра.
Как следует из вышесказанного, необходимо достаточно большое количество управляющих микросхем, синхронизирующих подачу потенциалов как на параллельный, так и на последовательный регистры сдвига. Очевидно, что последовательный регистр должен полностью освободиться от зарядов в промежутке между тактами параллельного регистра, поэтому требуется микросхема, синхронизирующая между собой оба регистра.
По указанной выше схеме работает так называемая полнокадровая ПЗС-матрица (full-frame CCD-matrix), её режим работы накладывает некоторое ограничение на конструкцию камеры: если в процессе считывания фототоков экспонирование не прекращается, «лишний» заряд, генерируемый попадающими на пиксели фотонами, «размазывается» по кадру. Поэтому необходим механический затвор, перекрывающий поступление света к сенсору на время, необходимое для считывания зарядов всех пикселей. Очевидно, что такая схема считывания фототоков не позволяет формировать видеопоток на выходе с матрицы, поэтому применяется она только в фототехнике.
Впрочем, избыточный заряд может накопиться в потенциальной яме и при фотосъёмке – например, при слишком «длинной» выдержке. «Лишние» электроны стремятся «растечься» по соседним пикселям, что на снимке отображается в виде белых пятен, размер которых связан с величиной переполнения. Данный эффект именуется блюмингом (от английского blooming – «размывание»). Борьба с блюмингом осуществляется посредством электронного дренажа (drain) – отвода из потенциальной ямы избыточного заряда (рисунок 5.13). Существует два основных вида дренажа: вертикальный (Vertical Overflow Drain, VOD) и боковой (Lateral Overflow Drain, LOD).
Рис. 5.13. Электронный дренаж ПЗС-матрицы
Для реализации вертикального дренажа на подложку ЭОП подаётся потенциал, который при переполнении глубины потенциальной ямы обеспечивает истечение избыточных электронов сквозь подложку. Основной минус такой схемы – уменьшение глубины потенциальной ямы, в результате чего сужается динамический диапазон. А в матрицах с обратной засветкой (в них фотоны проникают внутрь сенсора не сквозь электрод потенциальной ямы, а со стороны подложки) вертикальный дренаж вообще неприменим.
Боковой дренаж осуществляется при помощи специальных «дренажных канавок», в которые «стекают» избыточные электроны. Для формирования этих канавок прокладываются специальные электроды, на которые подаётся потенциал, формирующий дренажную систему. Другие электроды создают барьер, препятствующий преждевременному «бегству» электронов из потенциальной ямы.
Как следует из описания, при боковом дренаже глубина потенциальной ямы не уменьшается, однако при этом урезается площадь светочувствительной области пикселя. Тем не менее без дренажа обойтись нельзя, так как блюминг искажает снимок больше, чем все остальные виды помех. Поэтому производители вынуждены идти на усложнение конструкции матриц.
Таким образом, «обвязка» любого пикселя состоит как минимум из электродов переноса заряда и из компонентов дренажной системы. Однако большинство ПЗС-матриц отличается более сложной структурой своих элементов.
ПЗС-матрицы, используемые в видеокамерах и в большинстве любительских цифровых фотоаппаратов, обеспечивают непрерывный поток импульсов на своём выходе, при этом перекрытие оптического тракта не происходит. Чтобы при этом не происходило «смазывание» изображения, используются ПЗС-матрицы с буферизацией столбцов (interline CCD-matrix).
Рис. 5.14. ПЗС-матрица с буферным столбцом
В таких сенсорах рядом с каждым столбцом (который представляет собой последовательный регистр сдвига) располагается буферный столбец (тоже последовательный регистр сдвига), состоящий из ПЗС-элементов, покрытых непрозрачными полосками (чаще металлическими). Совокупность буферных столбцов составляет буферный параллельный регистр, причём столбцы данного регистра «перемешаны» с регистрирующими свет столбцами (рисунок 5.14).
За один рабочий цикл светочувствительный параллельный регистр сдвига отдаёт все свои фототоки буферному параллельному регистру посредством «сдвига по горизонтали» зарядов, после чего светочувствительная часть снова готова к экспонированию. Затем идёт построчный «сдвиг по вертикали» зарядов буферного параллельного регистра, нижняя строка которого является входом последовательного регистра сдвига матрицы.
Очевидно, что перенос заряда матрицы в буферный параллельный регистр сдвига занимает малый интервал времени и перекрывать световой поток механическим затвором нет необходимости – ямы не успеют переполниться. С другой стороны, необходимое время экспонирования, как правило, сравнимо со временем считывания всего буферного параллельного регистра. За счёт этого интервал между экспонированием можно довести до минимума – в результате видеосигнал в современных видеокамерах формируется с частотой от 30 кадров в секунду и выше.
В свою очередь, сенсоры с буферизацией столбцов подразделяются на две категории. При считывании за один такт всех строк можно говорить о матрице с прогрессивной развёрткой (progressive scan). Когда за первый такт считываются нечётные строки, а за второй – чётные (или наоборот), речь идёт о матрице с чересстрочной развёрткой (interlace scan). Кстати, за счёт сходства звучания английских терминов «матрица с буферизацией столбцов» (interlined) и «чересстрочная матрица» (interlaced) в отечественной литературе сенсоры с буферизацией строк нередко ошибочно называют чересстрочными.
Как ни странно, «размазывание» заряда (smear) происходит и в матрицах с буферизацией столбцов. Вызвано это частичным перетеканием электронов из потенциальной ямы светочувствительного ПЗС-элемента в потенциальную яму расположенного рядом буферного элемента. Особенно часто это происходит при близких к максимальному уровнях фототока, вызванных очень высокой освещённостью пикселя. В результате на снимке вверх и вниз от этой яркой точки протягивается светлая полоса, которая портит кадр.
Для противодействия этому явлению увеличивают расстояние между светочувствительным и буферным ПЗС-элементами. В результате усложняется обмен зарядом и увеличивается затрачиваемое на это время, однако искажения кадра, вызываемые «размазыванием», всё же слишком заметны, чтобы ими пренебрегать.
Буферизация столбцов позволяет также реализовать электронный затвор, с помощью которого можно отказаться от механического перекрытия светового потока. С помощью электронного затвора можно получить сверхмалые (до 1/10000 секунды) значения выдержки, недостижимые для механического затвора. Эта возможность особенно актуальна при фотографировании спортивных состязаний, природных явлений и т. п.
Для реализации электронного затвора обязательно необходим антиблюминговый дренаж. При очень коротких выдержках, которые по длительности меньше, чем время переноса заряда из потенциальной ямы светочувствительного ПЗС-элемента в потенциальную яму буферного, дренаж играет роль «отсечки». Эта «отсечка» предотвращает попадание в яму буферного ПЗС-элемента электронов, возникших в яме светочувствительного элемента по истечении времени выдержки.
Однако схема с буферизацией столбцов не лишена недостатков. Основной минус заключается в том, что буферные регистры сдвига «съедают» значительную часть площади матрицы, в результате каждому пикселю в качестве светочувствительной области достаётся лишь 30% от его общей поверхности. У пикселя полнокадровой матрицы эта область составляет 70%.
Для компенсации этого минуса производители используют микролинзы, располагающиеся над каждым элементом матрицы и фокусирующие весь достающийся пикселю световой поток на сравнительно малую светочувствительную область.
Литература;
Зайцев А.П., Шелупанов А.А., Мещеряков Р.В. и др. Технические средства и методы защиты информации. Учебник для вузов. Под ред. Зайцева А.П. и Шелупанова А.А. - М.: Горячая линия - Телеком, 2012.- 425 с
Соболев А.Н., Кириллов В.М., Физические основы технических средств обеспечения информационной безопасности: учебное пособие, - М., Гелиос, 2004, - 224c.
Торокин, А. А., Инженерно-техническая защита информации: учебное пособие для вузов / А. А. Торокин, - М, Гелиос АРВ, 2005, - 959c
Халяпин Д. Б. Защита информации. Вас подслушивают? Защищайтесь! - М.: Баярд, 2004 г., - 432с.
Хорев А. А. Техническая защита информации. В трех томах. Том 1. Технические каналы утечки информации. - М.: НПЦ «Аналитика» 2008, - 436с.
Хорев А. А. Способы и средства защиты информации. - М.: МО РФ, 1998, - 316 с.
Кучер В.А. Инженерно-техническая защита информации: учебное пособие. - Краснодар, Изд-во КубГТУ, 2007, - 227с.
Гришачев В.В., Халяпин Д.Б., Шевченко Н.А. Опасности возникновения каналов утечки конфиденциальной речевой информации по волоконно-оптическим структурированным кабельным системам // Материалы X Международной научно-практической конференции «Информационная безопасность». Ч. 2.- Таганрог: Изд-во ТТИ ЮФУ. 2008. - С. 103-105.
Скрыпник Д.А. Курс «Общие вопросы технической защиты информации». – М.: ИДО «ИНТУИТ».//intuit.ru
ФИЗИЧЕСКИЕ ОСНОВЫ ЗАЩИТЫ ИНФОРМАЦИИ
Учебное пособие
Составитель: Кучер Виктор Алексеевич
Электронное издание 2,71 МБ изд. № _____
Изд. кафедры
Кубанский государственный технологический университет
