- •Оглавление
- •1. Классификация технических каналов утечки информации
- •1.1. Структура технического канала утечки информации
- •1.2. Классификация технических каналов утечки информации
- •1.3. Понятие информационного сигнала
- •Модуляция сигналов
- •1.4. Опасные сигналы и их источники
- •2. Физические основы возникновения побочных электромагнитных излучений и наводок
- •2.1 Определение электромагнитного поля и его характеристики
- •2.6. Средства перехвата радиосигналов
- •2.7. Пэми персонального компьютера
- •3. Физические основы возникновения акустического (виброакустического) канала утечки речевой информации
- •3.1. Основные понятия в области акустики. Классификация акустических каналов утечки информации
- •4. Физические преобразователи
- •4.1 Характеристики физических преобразователей
- •4.2 Виды акустоэлектрических преобразователей
- •5.Физика оптико-электронного канала утечки информации
- •5.1.Классификация визуально-оптических куи
- •5.2 Характеристика оптических методов получения информации
- •5.3 Характеристики оптических приборов
- •350072, Г. Краснодар, ул. Московская, 2, кор. А
- •350000, Г. Краснодар, ул. Красная, 91
3. Физические основы возникновения акустического (виброакустического) канала утечки речевой информации
3.1. Основные понятия в области акустики. Классификация акустических каналов утечки информации
Прежде чем приступать к изучению акустических каналов утечки информации, необходимо определить основные понятия в области акустики.
Звук - механические колебания частиц упругой среды, субъективно воспринимаемые органом слуха. Так как звук, по сути, является волной, его основными характеристиками являются амплитуда и спектр частот. Человек слышит звуки в диапазоне 16-20000 Гц. Звук ниже диапазона слышимости называют инфразвуком, от 20000 Гц до 1 ГГц – ультразвуком, от 1 ГГц – гиперзвуком.
Информация, носителем которой являются акустические сигналы, называется акустической. Если источником информации является человеческая речь, ее называют речевой. Первичными источниками акустических колебаний являются механические системы, например, органы речи человека, а вторичными – преобразователи различного типа, в том числе электроакустические.
Звуковое поле – представляет собой пространство, в котором распространяются звуковые колебания. Звуковые колебания в газообразной и жидкой средах являются продольными, так как частицы вещества среды колеблются вдоль линии распространения звука.
Звуковое поле характеризуется некоторыми линейными и энергетическими величинами [1].
Линейные характеристики звукового поля
Звуковое давление - это переменное давление в среде, обусловленное распространением в ней звуковых волн. Величина звукового давления Р оценивается силой действия звуковой волны на единицу площади и выражается в барах(Н/м2).
Уровень звукового давления - это
отношение величины звукового давления
к нулевому уровню, за который принято
звуковое давление
:
.
Звуковое давление называется переменным из-за того, что передается от одной частицы к другой. Так, если в каком-то месте упругой среды произвести резкое смещение частиц, возникнет повышенное давление. Оно передастся соседним частицам, которые воздействуют на следующие и т.д. В результате область повышенного давления будет как бы перемещаться в упругой среде. При этом будет наблюдаться чередование областей повышенного и пониженного давления, которое приведет к появлению ряда областей сжатия и растяжения, распространяющихся по упругой среде в виде волны. Каждая частица среды будет совершать колебательное движение.
Скорость колебаний. При неодинаковых давлениях в рядом расположенных точках среды ее частицы перемещаются в сторону меньшего давления. При знакопеременной разности давлений возникает колебательное движение частиц относительно статического положения. Скорость колебаний в отличие от скорости звука величина переменная. Если частицы среды смещаются по направлению распространения волны, то скорость считается положительной.
В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.
Энергетические характеристики звукового поля
Сила (интенсивность) звука - количество звуковой энергии, проходящей за единицу времени через единицу площади; измеряется в ваттах на квадратный метр (Вт/м2). Следует отметить, что звуковое давление и сила звука связаны между собой квадратичной зависимостью, т.е. увеличение звукового давления в 4 раза приводит к увеличению силы звука в 16 раз.
Уровень силы звука - отношение силы данного звука I к нулевому уровню, за который принята сила звука I= 10–12 Вт/м2, выраженное в децибелах (дБ).
Уровни звукового давления и силы звука, выраженные в децибелах, совпадают по величине.
Порог слышимости - самый тихий звук, который способен различить человек на частоте 1000 Гц, что соответствует звуковому давлению .
Громкость звука - интенсивность звукового ощущения, вызванная данным звуком у человека с нормальным слухом. Громкость зависит от силы звука и его частоты, измеряется пропорционально логарифму силы звука и выражается количеством децибел, на которое данный звук превышает по интенсивности звук, принятый за порог слышимости. Единица измерения громкости - фон.
Динамический диапазон - диапазон громкостей звука или разность уровней звукового давления самого громкого и самого тихого звуков, выраженная в децибелах.
Источником образования акустического канала утечки информации являются вибрирующие, колеблющиеся тела и механизмы, такие как голосовые связки человека, движущиеся элементы машин, телефонные аппараты, звукоусилительные системы и т.д.
В зависимости от физической природы возникновения информационных сигналов, среды распространения акустических колебаний и способов их перехвата технические каналы утечки акустической (речевой) информации можно разделить на воздушные, вибрационные, электроакустические, оптико-электронный и параметрические (рисунок 3.1) [1-7].
Рис. 3.1. Классификация технических каналов утечки акустической информации
Рассмотрим более подробно акустические каналы, представленные на рисунке 3.1 и средства перехвата информации в них.
Понятно, что в воздушных акустических каналах утечки средой распространения акустических сигналов является воздух, а в качестве основного средства перехвата используется микрофон. Микрофон преобразует акустический сигнал в электрический и соединяется либо с записывающим устройством, либо с каким-то передатчиком. Передача полученных сигналов злоумышленнику может происходить по многим каналам: радиоканалу, оптическому каналу, по электросети и т.п.
Средой распространения акустических колебаний в вибрационных каналах являются конструкции зданий, стены, потолки, трубы и другие твердые тела. Для перехвата такой информации используются стетоскопы, в которых в качестве датчиков используются контактные микрофоны. Таким образом, электронные стетоскопы позволяют перехватывать информацию без доступа в защищаемые помещения. Внешний вид портативного стетоскопа представлен на рисунке 3.2.
Рис. 3.2. Малогабаритный электронный стетоскоп PKI 2850 с контактным микрофоном
Типичным представителям портативных электронных стетоскопов является стетоскоп PKI 2850. Размеры усилительного блока - 95х60х25 мм, а контактного микрофона – 50х35х15 мм. Несмотря на маленькие размеры, коэффициент усиления стетоскопа не менее 80 дБ. Время работы от встроенного аккумулятора – до 800 ч.
Современные электронные стетоскопы имеют коэффициент усиления порядка 80 - 100 дБ и способны улавливать даже такие слабые звуковые колебания, как шорох и тиканье часов. Датчики электронных стетоскопов могут устанавливаться на стенах, за дверными проемами, под подвесными потолками, на перегородках, трубах систем отопления и водоснабжения, коробах воздуховодов вентиляционных систем и соединяться с блоком усиления специально проложенным кабелем, так же, как в проводных микрофонных системах.
Электроакустические каналы утечки информации возникают за счет электроакустических преобразований, то есть акустические сигналы преобразуются в электрические. Из окружающих нас устройств наиболее известны такие акустоэлектрические преобразователи, как системы звукового вещания, телефоны и микрофоны.
Оптико-электронный канал. Съем информации в таком канале реализуется с помощью лазера, поэтому иногда этот канал называют лазерным. Под действием звуковой волны тонкие отражающие поверхности, например, стекло или зеркало, начинают вибрировать. Если направить на них лазер, отраженное лазерное излучение модулируется и поступает на вход приемника оптического излучения. В приемнике полученный сигнал демодулируется и усиливается, и злоумышленник может получить исходный акустический сигнал.
Возникновение параметрических каналов обусловлено тем, что под давлением звуковой волны может измениться взаимное расположение элементов схем, проводов и т.п. в ВТСС и ОТСС. Вместе с расположением изменяются индуктивность и емкость. Соответственно, будет наблюдаться модуляция сигналов, проходящих через ВТСС и ОТСС, информационным сигналом, содержащимся в акустической волне. Промодулированные сигналы излучаются в пространство, где могут быть перехвачены средствами радиоразведки.
Если в помещении установлены полуактивные закладные устройства с элементами, параметры которых могут изменяться под действием акустической волны, возможен съем информации с помощью ВЧ-навязывания. При облучении мощным высокочастотным сигналом помещения, в котором установлено такое закладное устройство, в последнем при взаимодействии облучающего электромагнитного поля со специальными элементами закладки (например, четвертьволновым вибратором) происходит образование вторичных радиоволн, то есть переизлучение электромагнитного поля. А специальное устройство закладки (например, объемный резонатор) обеспечивает амплитудную, фазовую или частотную модуляцию переотраженного сигнала по закону изменения речевого сигнала. Подобного вида закладки иногда называют полуактивными. Для перехвата информации по данному каналу кроме закладного устройства необходимы специальный передатчик с направленным излучением и приемник. Схема утечки акустической информации с помощью ВЧ-навязывания показана на рисунке 3.3.
Рис. 3.3. Схема утечки акустической информации с помощью ВЧ-навязывания
Для ВЧ – навязывания не обязательно использовать закладные устройства. Можно облучать любые устройства, обладающие "микрофонным эффектом", и получать в отраженной волне модулированный информационным сигнал. Такие параметрические каналы утечки информации иногда называют пассивными, так как они не требуют от злоумышленника предварительной установки закладных устройств и возникают в результате естественных физических процессов. Интересным фактом является то, что аппаратура высокочастотного навязывания может подключаться к соединительной линии ВТСС на удалении до нескольких сот метров от контролируемого помещения.
Понятность и разборчивость речи
Основной характеристикой любого канала передачи речи является понятность речи. Для определения этой характеристики применяют статистический метод с участием большого числа слушателей и дикторов. Разработан количественный метод определения понятности речи через ее разборчивость.
Под разборчивостью речи понимают относительное или процентное количество принятых (понятых) элементов речи из общего числа переданных по каналу связи. Элементы речи составляют слоги, звуки, слова, фразы, цифры. В соответствии им поставлены слоговая, звуковая, словесная, смысловая и цифровая разборчивость. Для измерения разборчивости разработаны артикуляционные таблицы слогов, звукосочетаний и слов с учетом встречаемости их в русской речи.
В таблице 3.1 приведены градации понятности речи и соответствующие им разборчивости, полученные эмпирическим путем [4].
Таблица 3.1
Понятность речи |
Разборчивость речи, % |
|
Слоговая |
Словесная |
|
Предельно допустимая |
25-40 |
75-87 |
Удовлетворительная |
40-50 |
87-93 |
Хорошая |
50-80 |
93-98 |
Отличная |
80 и выше |
98 и выше |
Звуки речи являются сложными звуками в основном из-за того, что процесс речеобразования сопровождается резонансными явлениями. Собственные частоты которых изменяются в зависимости от того, какой звук в данный момент произносится.
Источник звука вызывает в системе резонаторов речеобразующего тракта собственные колебания. Звуки на собственных частотах резонаторов являются наиболее усиленными. Собственные частоты резонаторов называются формантами звука, так как они формируют характерное звучание гласных и согласных.
Частоты формант определяются конфигурацией речевого тракта и свойства источника звука на них не влияет. Это одно из важнейших положений акустической теории речеобразования.. Это положение позволяет связывать частоты формант только со спецификой артикуляции и по частотам формант судить о положении артикуляционных органов.
Форманты звуков речи заполняют весь частотный диапазон 150-7000 Гц. Средняя вероятность появления формант в том или ином участке частот для каждого языка вполне определена. Условились делить весь частотный диапазон на 20 полос (в том числе и для русского языка) с одинаковой вероятностью появления формант в каждой из них. Соответсутвющие полосы назвали полосами равной разборчивости. Оказалось, что при достаточно большой объеме передаваемой речи вероятности появления формант подчиняются правилу аддитивности. Вследствие этого вероятность появления формант в каждой полосе равной разборчивости равна 0,05.
Если воспринимать речь в условиях шумов и помех, то ее разборчивость получается меньшей. Это связано с тем, что форманты имеют различные уровни интенсивности: угромких звуков выше чем у глухих. Поэтому при повышении уровня шумов сначала маскируются форманты с низкими уровнями, а затем - с более высокими.
Так как вся энергия звуков речи в основном сосредоточена в формантах, то уровни формант практически совпадают с уровнями звуков речи.
Порог слышимости в шумах определяется спектральными уровнями шумов. Разность между средним спектральным уровнем речи и спектральным уровнем шумов будет определять вероятность появления формант выше уровня шумов.
Коэффициент разборчивости ώ определяется уровнем ощущения формант
Е = Вр х Вш,
где Вр – средний спектральный уровень речи; Вш – спектральный уровень шумов.
Для уровней ощущений, находящихся в пределах 0-18 дБ, коэффициент разборчивости можно определить по следующей приближенной формуле:
ώ = (Е+6)/30.
Для каждой полосы равной разборчивости коэффициент разборчивости ώn будет разным. Тогда суммарная вероятность приема формант (разборчивость формант) Àф определятся как
Àф = ∑0,05* ώn (при n = 1, 2, 3, …, 20).
3.2. Средства акустической разведки В общем случае акустическая разведка осуществляется перехватом производственных шумов объекта и перехватом речевой информации. По способу применения технические средства съема акустической информации можно подразделить на две большие категории [3,5,6]:
Рассмотрим более подробно перечисленные выше средства акустической разведки. Радиозакладки. Назначением этих устройств является передача по радиоканалу акустической информации с защищаемого объекта. Закладки могут быть исполнены в виде отдельного модуля или имитировать формой повседневные предметы обихода (пепельницу, зажигалку, калькулятор, авторучку и т.д.). Внешний вид радиозакладок представлен на рисунках 3.4, 3.5, 3.6.
Рис. 3.4. Камуфлированная радиозакладка в виде зажигалки
Рис. 3.5. Камуфлированная радиозакладка в виде монеты
Рис. 3.6. Радиозакладка в обычном исполнении Радиозакладка передает информацию с помощью электромагнитных волн радиодиапазона. Естественным является обязательное наличие приемника в данной схеме. Интересно, что приемники могут использоваться разные и принципиальных отличий бытовых приемников (плеер, музыкальный центр, магнитофон) от специальных нет. Единственное, что определяет в данном случае прием - частота, на которой работает радиозакладка. Фактически злоумышленник может не тратиться на покупку специального приемника и принимать сигнал стандартными средствами в широковещатетельном диапазоне. Конечно, в этом случае другой человек с бытовым приемником в радиусе действия радиозакладки сможет тоже принять данный сигнал, что увеличивает вероятность обнаружения злоумышленника. Недостатком радиозакладок с точки зрения злоумышленника является возможность их обнаружения специальным приемником контроля. Этого недостатка лишены закладные устройства, передающие информацию по оптическому каналу в ИК-диапазоне, который не видим для глаза человека. Естественно обнаружить ИК-передатчики крайне сложно. Ввиду того, что информация передается по оптическому каналу, закладка должна находиться в области прямой видимости злоумышленника. Как правило, ИК-передатчики располагаются с внешней стороны оконных рам, в вентиляционных отверстиях и т.п., что облегчает задачу их поиска. Пример применения ИК-датчика показан на рисунке 3.7.
Рис. 3.7. Перехват акустической информации с помощью ИК-закладки К недостаткам ИК-закладок можно отнести высокую стоимость и высокое потребление энергии, в результате чего среднее время работы составляет в 15-20 часов. Кроме радио и оптического канала для передачи информации используются линии электропитания силовой сети 220 В и телефонные линии. Закладки, использующие линии электропитания для передачи информации, часто называют сетевыми закладками (рис. 3.8). Принцип работы таких закладок схож с радиозакладками.
Рис. 3.8. Сетевая акустическая закладка К техническим средствам съема акустической информации относятся также диктофоны. Диктофон - устройство, регистрирующее голосовую информацию ленту, проволоку, внутреннюю микросхему памяти. Время записи различных диктофонов колеблется в пределах от 15 минут до 8 часов. Современные цифровые диктофоны записывают информацию во внутреннюю память, позволяющую производить запись разговора длительностью до нескольких часов. Эти диктофоны практически бесшумны (т.к. нет ни кассеты, ни механического лентопротяжного механизма, производящих основной шум), имеют возможность сброса записанной информации в память компьютера для ее дальнейшей обработки. Питание большинства диктофонов обеспечивается батарейками, вес которых составляет десятки и сотни грамм. При этом современные диктофоны могут иметь очень маленький размер, позволяющий размещать их где угодно в защищаемом помещении.
Рис. 3.9. Мини-диктофон Edic-Mini Tiny B21 На рисунке 3.9 приведен пример современного цифрового мини-диктофона Edic-Mini Tiny B21, который имеет следующие характеристики: активация по голосу, вес 6 г, размеры 40x8x15 мм, до 60 часов работы при использовании воздушно-цинковых батареек. На стадии строительства или ремонта помещения в нем скрытно могут быть установлены маленькие микрофоны, которые по проводам соединяются с приемником сигнала. Такие микрофоны называют проводными. В проводных системах используются в основном электретные микрофоны, обеспечивающие регистрацию речи средней громкости на удалении до 7-10 м от его источника. При этом частотный диапазон составляет от 20 – 100 Гц до 6 – 20 кГц. Для питания таких микрофонов используется постоянно напряжение 9-15 В. Как правило, микрофон снабжается усилителем. Для передачи информации и питания усилителя используются 2-х или 3-х проводные линии (рисунки 3.10, 3.11.).
Рис. 3.10. 3-х проводной микрофон Шорох-8
Рис. 3.11. 2-х проводной микрофон Микрофоны устанавливаются либо скрытно (немаскированые), либо маскируются под предметы обихода, офисной техники и т.д. Несколько микрофонов могут заводиться на общее коммутирующее устройство, позволяющее одновременно контролировать несколько помещений и осуществляющее запись перехваченных разговоров на диктофон. Для передачи акустической (речевой) информации по телефонной линии используются закладные устройства типа "телефонное ухо".
Рис. 3.12. "Телефонное ухо" ТУ-2 Данное устройство тайно монтируется в корпус телефона или телефонную розетку и представляет собой, как правило, высокочувствительный микрофон электретного типа с усилителем и специальным устройством для подключения к телефонной линии при дозвоне по определенной схеме. Принцип работы следующий. Человек производит телефонный звонок по номеру, на котором "висит" закладка. "Телефонное ухо" "умалчивает" первые два звонка, таким образом, в помещении телефонные звонки не раздаются. Вызывающий кладет трубку и опять набирает этот номер. В трубке будет звучать сигнал "занято", оператор ждет 30-60 с (временной пароль) и после прекращения сигнала "занято" набирает бипером номер - включается микрофон и оператор слышит все, что происходит в контролируемом помещении практически из любой точки мира, где есть телефонный аппарат. Разрыв связи произойдет, если оператор положит трубку или если кто-то поднимет телефонную трубку в контролируемом помещении. Для всех остальных абонентов, желающих дозвониться по этому номеру, бу дет слышен сигнал "занято". Данный алгоритм работы является типовым, но может отличаться в деталях реализации, в зависимости от требований. При этом питание устройства осуществляется по телефонной линии, то есть срок службы его практически не ограничен. Направленные микрофоны Если требуется организовать прослушивание разговоров в помещении, доступ в которое так же, как и доступ в соседние помещения, невозможен, то используются направленные микрофоны. Направленные микрофоны имеют узкую диаграмму направленности (5…35˚) и коэффициент усиления более 70...90 дБ. Максимальная дальность действия НАМ в условиях города не превышает 100 – 150 м, за городом при низком уровне шумов дальность разведки может составлять до 500 м и более. Виды направленных микрофонов:
Параболический микрофон. Представляет собой отражатель звука параболической формы, в фокусе которого расположен обычный (ненаправленный) микрофон. Отражатель изготавливается как из оптически непрозрачного, так и прозрачного (например, акриловая пластмасса) материала. Величина внешнего диаметра параболического зеркала может быть от 200 до 500 мм. Принцип работы этого микрофона поясняется на рисунке 3.13. Звуковые волны с осевого направления, отражаясь от параболического зеркала, суммируются в фазе в фокальной точке А. Возникает усиление звукового поля. Чем больше диаметр зеркала, тем большее усиление может обеспечить устройство. Если направление прихода звука не осевое, то сложение отраженных от различных частей параболического зеркала звуковых волн, приходящих в точку А, даст меньший результат, поскольку не все слагаемые будут в фазе. Ослабление тем сильнее, чем больше угол прихода звука по отношению к оси. Создается, таким образом, угловая избирательность по приему. Параболический микрофон является типичным примером высокочувствительного, но слабонаправленного микрофона. Внешний вид параболических направленных микрофонов представлен на рисунках 3.14, 3.15. Трубчатые микрофоны, или микрофоны "бегущей" волны. В отличие от параболических микрофонов и плоских акустических решеток, принимают звук не на плоскости, а вдоль некоторой линии, совпадающей с направлением на источник звука. Принцип их действия поясняется на рисунке 3.16.
Рис. 3.13. Принцип работы параболического микрофона
Рис. 3.14. Внешний вид направленного микрофона «Супер Ухо – 100»
Рис. 3.15. Внешний вид параболического направленного микрофона
Рис. 3.16. Трубчатый микрофон. Основой трубчатого микрофона является звуковод в виде жесткой полой трубки диаметром 10-30 мм со специальными щелевыми отверстиями, размещенными рядами по всей длине звуковода, с круговой геометрией расположения для каждого из рядов. Очевидно, что при приеме звука с осевого направления будет происходить сложение в фазе сигналов, проникающих в звуковод через все щелевые отверстия, поскольку скорости осевого распространения звука вне трубки и внутри нее одинаковы. Когда же звук приходит под некоторым углом к оси микрофона, то это ведет к фазовому рассогласованию, так как скорость звука в трубке будет больше осевой составляющей скорости звука вне ее, вследствие чего снижается чувствительность приема. Обычно длина трубчатого микрофона от 15-230 мм до 1 м. Чем больше его длина, тем сильнее подавляются помехи с боковых и тыльного направлений.
Рис. 3.17. Внешний вид трубчатого направленного микрофона PKI 2925
Рис. 3.18. Миниатюрный направленный микрофон UEM-88 Направленный микрофон органного типа. С помощью направленного микрофона органного типа можно прослушать разговор на расстоянии до 1 км в пределах прямой видимости. Здесь имеет место принцип: "поблизости никого нет, но тем не менее вас хорошо прослушивают". Использование явления резонанса звуковых волн в направленных системах приводит к увеличению уровня сигнала звуковой энергии, который поступает в микрофон. Простой направленный микрофон представляет собой набор из семи алюминиевых трубок диаметром 10 мм. Длина трубки определяет резонансную частоту звукового сигнала. Формула для расчета длины трубок имеет следующий вид: L = 330/2F, где L - длина трубки в метрах; F - резонансная частота в герцах. Исходя из вышеприведенной формулы, можно построить таблицу 3.2, где N - номер трубки. Таблица 3.2
Рис. 3.19. Избирательная система из направленных трубок
Рис. 3.20. Микрофон в параболическом улавливатели Усиление сигнала происходит за счет использования высокочувствительного микрофонного усилителя МУ. Этот направленный микрофон перекрывает диапазон частот от 300 Гц до 3300 Гц, т. е. основной информационный диапазон речевого сигнала. Если необходимо получить более качественное восприятие речи, то необходимо расширить диапазон принимаемых частот. Это можно сделать путем увеличения количества резонансных трубок, например, до 37 штук. Такая резонансная система перекрывает диапазон частот от 180 Гц до 8200 Гц. Плоские фазированные решетки. Плоские фазированные решетки реализуют идею одновременного приема звукового поля в дискретных точках некоторой плоскости, перпендикулярной к направлению на источник звука (рис. 2). В этих точках (А1, А2, А3...) размещаются либо микрофоны, выходные сигналы которых суммируются электрически, либо, и чаще всего, открытые торцы звуководов, например трубки достаточно малого диаметра, которые обеспечивают синфазное сложение звуковых пален от источника в некотором акустическом сумматоре.
Рис. 3.21. Плоская фазированная решетка К выходу сумматора подсоединен микрофон. Если звук приходит с осевого направления, то все сигналы, распространяющиеся по звуководам, будут в фазе, и сложение в акустическом сумматоре даст максимальный результат. Если направление на источник звука не осевое, а под некоторым углом к оси, то сигналы от разных точек приемной плоскости будут разными по фазе и результат их сложения будет меньшим. Чем больше угол прихода звука, тем сильнее его ослабление. Обычно число приемных точек Аi в таких решетках составляет несколько десятков. Конструктивно плоские фазированные решетки встраиваются либо в переднюю стенку атташе-кейса с последующим камуфляжем, либо в майку-жилет, которая надевается под пиджак или рубашку. Необходимые электронные блоки (усилитель, элементы питания, магнитофон) располагаются соответственно либо в кейсе, либо под одеждой. Таким образом, плоские фазированные решетки с камуфляжем визуально более конспиративны по сравнению с параболическим микрофоном. Градиентный микрофон. Он представляет собой два достаточно миниатюрных и близкорасположенных высокочувствительных микрофона М1 и М2, выходные сигналы которых электрически (или акустически) вычитаются друг из друга, реализуя в конечных разностях первую производную звукового поля по оси микрофона и формируя диаграмму вида cos Q, где Q - угол прихода звука. Тем самым обеспечивается относительное ослабление акустических полей с боковых направлений (О - 90°). Градиентными микрофонами высоких порядков называют системы, реализующие пространственные производные 2-го, З-го и более старших порядков. Основной пользовательской характеристикой направленных микрофонов является дальность их действия в конкретных условиях R. Для открытого пространства и изотропных и независимых по угловым направлениям внешних акустических помех дальность действия R связана:
q = Bp - Bш - 20lg R+G - Bп , (1) где G - так называемый коэффициент направленного действия микрофона (дБ), Вп - пороговая акустическая чувствительность микрофона (дБ).
Рис. 3.22. Простейший градиентный микрофон Входящий в формулу (1) коэффициент G направленного действия характеризует степень относительного подавления внешних акустических помех: чем он больше, тем сильнее это подавление. Теоретически он связан с нормированной диаграммой направленности микрофона F (Q,j ) соотношением вида:
где Q - угол прихода звуковой волны по отношению к оси микрофона; j - угол прихода звуковой волны в полярных координатах плоскости, перпендикулярной оси. Например, для трубчатого микрофона, когда
где l - длина волны звука. а L - длина трубки, имеем ( при L > l . ) : G = 4 L/l . (4) Аналогично выводится приближенная формула для коэффициента направленного действия параболических микрофонов и фазированных плоских решеток: G = 4π (S/l2), (5) где S - площадь входной апертуры; l - длина волны звука. Для градиентных микрофонов n-го порядка при оптимальной обработке сигналов G=n (n+1), (6) где n - порядок градиента. При известных значениях величины G формула (1) достаточна для получения абсолютных оценок ожидаемого спектрального отношения сигнал/помеха, если известны условия. Но во многих случаях знания этих условий бывают неточны. Поэтому более оправданно использовать не абсолютные, а относительные оценки дальности, как не требующие точных знаний условий, поскольку сопоставление происходит при их равенстве. Принимая такую идеологию, сравним возможности направленных микрофонов с возможностями не вооруженного специальными устройствами человеческого слуха. Формально для него можно записать соотношение, аналогичное (1). В результате сравнения получим: R=R0 x 10 0,05 (G-G0) – 0,005 (D-Bп) , (7) где R0 - дальность слышимости звука органом слуха; R - дальность действия направленного мммикрофона микрофона с тем же качеством контроля; G0 - коэффициент направленного действия органа слуха человека (режим биноурального прослушивания ); (D-Bп) - разность пороговой чувствительности направленного микрофона и органа слуха.
3.3 Физические основы образования виброакустического и акустооптического (лазерного) технических каналов утечки информации В виброакустических (вибрационных) технических каналах утечки информации акустические сигналы, возникающие при ведении разговоров в выделенном помещении, при воздействии на строительные конструкции (стены, потолки, полы, двери, оконные рамы и т.п.) и инженерно-технические коммуникации (трубы водоснабжения, отопления, канализации, воздуховоды и т.п.) вызывают в них упругие (вибрационные) колебания, которые и регистрируются датчиками средства разведки (рисунок 3.23).
Рис. 3.23. Схема виброакустического технического канала утечки информации Для перехвата речевой информации по виброакустическим каналам в качестве средств акустической разведки используются электронные стетоскопы и закладные устройства с датчиками контактного типа. Наиболее часто для передачи информации с таких закладных устройств используется радиоканал, поэтому их называют радиостетоскопами. В качестве датчиков средств акустической разведки используются контактные микрофоны (вибропребразователи), чувствительность которых составляет от 50 до 100 мкВ/Па, что, дает возможность прослушивать разговоры и улавливать слабые звуковые колебания (шорохи, тиканье часов и т.д.) через бетонные и кирпичные стены толщиной более 100 см, а также двери, оконные рамы и инженерные коммуникации. Электронные стетоскопы и закладные устройства с датчиками контактного типа позволяют перехватывать речевую информацию без физического доступа “агентов” в выделенные помещения. Их датчики наиболее часто устанавливаются на наружных поверхностях зданий, на оконных проемах и рамах, в смежных (служебных и технических) помещениях за дверными проемами, ограждающими конструкциями, на перегородках, трубах систем отопления и водоснабжения, коробах воздуховодов вентиляционных и других систем. При этом возможности по перехвату информации будут во многом определяться затуханием информационного сигнала в ограждающих конструкциях и уровнем внешних шумов в месте установки контактного микрофона (табл. 3.3, 3.4). Таблица 3.3. Затухание вибрационных сигналов на ограждающих конструкциях
Таблица 3.4. Средний интегральный уровень вибрационных шумов
Проведенные измерения и расчеты показали, что качество добываемой средствами акустической разведки речевой информации по прямому акустическому и виброакустическому каналам вполне достаточно для составления подробной справки о содержании перехваченного разговора (табл. 3.5). Таблица 3.5. Разборчивость речи при перехвате информации средствами разведки по прямому акустическому и виброакустическому каналам
Иностранными фирмами выпускаются различные варианты стетоскопов от простейших портативных малогабаритных до сложных электронных стетоскопов, оборудованных набором эквалайзерных фильтров и высокочувствительным низкочастотным усилителем. Например, стетоскоп РК 845-S имеет размеры 54х80х20 мм, вес 125 г и коэффициентом усиления 80 дБ, а электронный стетоскоп РК 845-SS весит около 3,9 кг и имеет коэффициент усиления более 87 дБ. Электронные стетоскопы, как правило, устанавливаются в смежных (служебных и технических) помещениях (рисунок 3.24), а радиостетоскопы, в виду своей миниатюрности, - в малозаметных местах на наружных поверхностях зданий, на оконных проемах и рамах, за дверными проемами, на перегородках, трубах систем отопления и водоснабжения, коробах воздуховодов вентиляционных и других систем.
Рис. 3.24. Перехват речевой информации с использованием электронных стетоскопов из смежных помещений, принадлежащих другим организациям (учреждениям) и расположенных в том же здании, что и выделенные помещения
Рис. 3.25. Перехват речевой информации с использованием закладных устройств с датчиками контактного типа, скрытно установленных с внешней стороны окна, с передачей информации по радиоканалу (радиостетоскопами) Для установки на внешних оконных стеклах могут использоваться сверхминиатюрные радиостетоскопы, покрытые липкой резиновой массой и по внешнему виду напоминающие шарик или комочек грязи. Такой шарик путем ручного броска приклеивается с наружной стороны окна и передает информацию в течение 1 - 2 дней, по их истечении резиновая масса высыхает, закладка отлипает от поверхности, на которой была прикреплена, и падает. Для установки радиостетоскопов в местах, физический доступ к которым невозможен, используются специальные бесшумные пистолеты или арбалеты, стреляющие “стрелами - радиозакладками”. Стрела с миниатюрной радиозакладкой, в удароустойчивом исполнении, надежно прикрепляется к поверхностям из любого материала: металла, дерева, пластмассы, стекла, камня, бетона и т.п. при выстреле с расстояния до 25 м . В период строительства в стены здания могут быть встроены радиостетоскопы длительного времени действия, оснащенные системой дистанционного управления. Время работы таких устройств может составлять в режиме дежурного приема более 10 лет, а в режиме передачи более 6 месяцев. Наиболее часто такие устройства камуфлируются под обычные кирпичи. Датчики акселерометрического типа такого кирпича” перехватывают вибрационные колебания, возникающие при ведении разговоров в помещениях, в диапазоне частот от 100 Гц до 10 кГц. Дальность передачи информации с таких устройств в UHF-диапазоне обычно составляет 300 – 500 м. Акустооптический (лазерный) технический канал утечки информации образуется при облучении лазерным лучом вибрирующих в акустическом поле, возникающем при ведении разговоров, тонких отражающих поверхностей (стекол окон, картин, зеркал и т.д.). Отраженное лазерное излучение (диффузное или зеркальное) модулируется по амплитуде и фазе (по закону вибрации поверхности) и принимается приемником оптического (лазерного) излучения, при демодуляции которого выделяется речевая информация (рисунок 3.26). Причем лазер и приемник оптического излучения могут быть установлены в одном или разных местах (помещениях) (рисунок 3.26). Для перехвата речевой информации по данному каналу используются сложные лазерные акустические системы разведки (ЛАСР), иногда называемые “лазерными микрофонами”. ЛАСР состоит из источника когерентного излучения (лазера) и приемника оптического излучения, оснащенного фокусирующей оптикой. Для обеспечения высокой механической устойчивости передатчика и приемника, что крайне необходимо для нормальной работы системы, последние устанавливаются на треножных штативах. Передатчик и приемник переносятся в обычном портфеле-дипломате. Как правило, в таких системах используются лазеры, работающие в невидимом глазу ближнем инфракрасном диапазоне длин волн (0,75 - 1,1 мкм).
Рис. 3.26. Схема акустооптического (лазерного) технического канала утечки информации
Рис. 3.27. Перехват речевой информации с использованием лазерной акустической системы разведки путем «лазерного» зондирования оконных стекол Принцип действия системы заключается в следующем. Передатчик осуществляет облучение наружного оконного стекла узким лазерным лучом. Приемник принимает рассеянное отраженное излучение, модулированное по амплитуде и фазе по закону изменения акустического (речевого) сигнала, возникающего при ведении разговоров в контролируемом помещении. Принятый сигнал детектируется, усиливается и прослушивается на головных телефонах или записывается на магнитофон. Для улучшения разборчивости речи в приемнике используется специальное шумоподавляющее устройство. Для наведения лазерного луча на цель совместно с передатчиком и приемником используются специальные устройства - визиры. Данные системы наиболее эффективны для прослушивания разговоров в помещениях небольшого размера, которые по своим акустическим характеристикам близки к объемному резонатору, когда все двери и окна помещения достаточно хорошо герметизированы. Эффективны они и для подслушивания разговоров, ведущихся в салонах автомашин. Современные ЛАСР позволяют снимать” информацию не только с наружных, но и внутренних оконных стекол, зеркал, стеклянных дверей и других предметов. Для увеличения дальности разведки оконные стекла обрабатывают специальным составом, значительно увеличивающим коэффициент отражения лазерного излучения, или устанавливают на них специальные направленные отражатели (триппель-призмы). Лазерные акустические системы разведки имеют дальность действия при приеме диффузноотраженного излучения до 100 м, при обработке (покрытии) стекол специальным материалом – более 300 м, а при установке на оконных стеклах триппель-призм – более 500 м. К типовой лазерной акустической системе разведки относится система HKG GD-7800, которая состоит из передатчика, на основе полупроводникового лазера, мощностью 5 мВт и работающего в диапазоне 0,75 – 0,84 мкм (фокусное расстояние объектива 135 мм) и приемника лазерного излучения на основе малошумящего PIN-диода (фокусное расстояние объектива 500 мм), закамуфлированного под стандартную зеркальную камеру. При переноске вся система размещается в обычном кейсе. Акустоэлектрические и акустоэлектромагнитные (параметрические) технические каналы утечки речевой информации Акустоэлектрические технические каналы утечки информации возникают в следствие преобразования информативного сигнала из акустического в электрический за счет “микрофонного” эффекта в электрических элементах вспомогательных технических средств и систем (ВТСС). Некоторые элементы ВТСС, в том числе трансформаторы, катушки индуктивности, электромагниты вторичных электрочасов, звонков телефонных аппаратов, дроссели ламп дневного света, электрореле и т. п., обладают свойством изменять свои параметры (емкость, индуктивность, сопротивление) под действием акустического поля, создаваемого источником акустических колебаний. Изменение параметров приводит либо к появлению на данных элементах электродвижущей силы (ЭДС), изменяющейся по закону воздействующего информационного акустического поля, либо к модуляции токов, протекающих по этим элементам, информационным сигналом. Например, акустическое поле, воздействуя на якорь электромагнита вызывного телефонного звонка, вызывает его колебание. В результате чего изменяется магнитный поток сердечника электромагнита. Изменение этого потока вызывает появление ЭДС самоиндукции в катушке звонка, изменяющейся по закону изменения акустического поля. ВТСС, кроме указанных элементов, могут содержать непосредственно электроакустические преобразователи. К таким ВТСС относятся некоторые датчики пожарной сигнализации, громкоговорители ретрансляционной сети и т.д. Эффект электроакустического преобразования акустических колебаний в электрические часто называют “микрофонным эффектом”. Причем из ВТСС, обладающих “микрофонным эффектом”, наибольшую чувствительность к акустическому полю имеют абонентские громкоговорители и некоторые датчики пожарной сигнализации. Перехват акустических колебаний в данном канале утечки информации осуществляется путем непосредственного (гальванического) подключения к соединительным линиям ВТСС, обладающим “микрофонным эффектом”, специальных высокочувствительных низкочастотных усилителей (пассивный акустоэлектрический канал) (рисунок 3.28). Например, подключая такие средства к соединительным линиям телефонных аппаратов с электромеханическими вызывными звонками, можно прослушивать разговоры, ведущиеся в помещениях, где установлены эти аппараты (рисунок 3.29). Но вследствие незначительного уровня наведенной ЭДС дальность перехвата речевой информации, как правило, не превышает нескольких десятков метров.
Рис. 3.28. Схема акустоэлектрического пассивного технического канала утечки информации Активный акустоэлектрический технический канал утечки информации образуется путем несанкционированного контактного введения токов высокой частоты от соответствующего генератора в линии (цепи), имеющие функциональные связи с нелинейными или параметрическими элементами ВТСС, на которых происходит модуляция высокочастотного сигнала информационным (рисунок 3.30). Информационный сигнал в данных элементах ВТСС появляется вследствие электроакустического преобразования акустических сигналов в электрические. В силу того, что нелинейные или параметрические элементы ВТСС для высокочастотного сигнала, как правило, представляют собой несогласованную нагрузку, промодулированный высокочастотный сигнал будет отражаться от нее и распространяться в обратном направлении по линии или излучаться. Для приема излученных или отраженных высокочастотных сигналов используются специальные приемники с достаточно высокой чувствительностью. Для исключения влияния зондирующего и переотраженного сигналов могут использоваться импульсные сигналы.
Рис. 3.29. Перехват речевой информации путем подключения специальных низкочастотных усилителей к соединительным линиям ВТСС, обладающих “микрофонным эффектом”
Такой метод получения информации часто называется методом “высокочастотного навязывания” и, в основном, используется для перехвата разговоров, ведущихся в помещении, путем подключения к линии телефонного аппарата, установленного в контролируемом помещении (рисунок 3.31). Для исключения воздействия высокочастотного сигнала на аппаратуру АТС в линию, идущую в ее сторону, устанавливается специальный фильтр нижних частот. Аппаратура высокочастотного навязывания” может подключаться к телефонной линии на удалении до нескольких сот метров от выделенного помещения.
Рис. 3.30. Схема акустоэлектрического активного технического канала утечки информации
Рис. 3.31. Перехват речевой информации путем подключения аппаратуры высокочастотного навязывания” к соединительным линиям ВТСС, обладающим “микрофонным эффектом” Акустоэлектромагнитные (параметрические) технические каналы утечки речевой информации можно разделить на пассивные и активные. Образование пассивного акустоэлектромагнитного канала утечки информации связано с наличием в составе некоторых ВТСС высокочастотных генераторов. В результате воздействия акустического поля меняется давление на все элементы высокочастотных генераторов ВТСС. При этом изменяется (незначительно) взаимное расположение элементов схем, проводов в катушках индуктивности, дросселей и т. п., что может привести к изменениям параметров высокочастотного сигнала, например, к модуляции его информационным сигналом. Поэтому этот канал утечки информации называется параметрическим. Это обусловлено тем, что незначительное изменение взаимного расположения, например, проводов в катушках индуктивности (межвиткового расстояния) приводит к изменению их индуктивности, а, следовательно, к изменению частоты излучения генератора, т.е. к частотной модуляции сигнала. Или воздействие акустического поля на конденсаторы приводит к изменению расстояния между пластинами и, следовательно, к изменению его емкости, что, в свою очередь, также приводит к частотной модуляции высокочастотного сигнала генератора. Наиболее часто наблюдается паразитная модуляция информационным сигналом излучений гетеродинов радиоприемных и телевизионных устройств, находящихся в выделенных помещениях и имеющих конденсаторы переменной емкости с воздушным диэлектриком в колебательных контурах гетеродинов. Радиоизлучения, модулированные информативным сигналом, возникающие при работе различных генераторов, входящих в состав технических средств, или при наличии паразитной генерации в узлах (элементах) технических средств, установленных в выделенном помещении могут быть перехвачены средствами радиоразведки. Данный акустоэлектромагнитный (параметрический) технические канал утечки информации называется пассивным (рисунки 3.32, 3.33).
Рис. 3.32. Схема акустоэлектромагнитного (параметрического) пассивного технического канала утечки информации
Рис. 3.33. Перехват речевой информации путем приема и детектирования побочных электромагнитных излучений ВТСС, обладающих “микрофонным эффектом” (на частотах работы их высокочастотных генераторов) Активный акустоэлектромагнитный канал утечки информации может быть реализован и путем “высокочастотного облучения” помещения, где установлены ВТСС, обладающие “микрофонным эффектом”, или закладные устройства, имеющие элементы, некоторые параметры которых (например, добротность и резонансная частота объемного резонатора) изменяются по закону изменения акустического (речевого) сигнала. При облучении мощным высокочастотным сигналом помещения, в котором установлено такое закладное устройство, в последнем при взаимодействии облучающего электромагнитного поля со специальными элементами закладки (например, четвертьволновым вибратором) происходит образование вторичных радиоволн, т.е. переизлучение электромагнитного поля. А специальное устройство закладки (например, объемный резонатор) обеспечивает амплитудную, фазовую или частотную модуляцию переотраженного сигнала по закону изменения речевого сигнала. Подобного вида закладки иногда называют полуактивными или эндовибраторами. Для перехвата информации по данному каналу кроме закладного устройства необходимы специальный высокочастотный генератор с направленной антенной и специальный радиоприемник. Дальность действия таких систем может составлять несколько сот метров. 3.4. Новые каналы утечки конфиденциальной речевой информации через волоконно-оптические подсистемы структурированной кабельной системы (СКС) Новые угрозы информационной безопасности Переход в современных закрытых информационных коммуникациях с электронных на волоконно-оптические технологии позволяет существенно улучшить основные технические параметры информационных систем, удовлетворить текущие запросы потребителей информации и иметь значительные возможности для последующего развития [8]. А появляющиеся потребности в бизнесе таких услуг, как распределённый офис, интернет-конференция, потоковое видео высокой четкости и других запросов, приводит к проникновению волоконно-оптических технологий на уровень локальных сетей, структурированных кабельных систем. Столь широкое распространение волоконно-оптических систем связи создаёт новые угрозы в защите информации, внимание к которым не является достаточным. При разработке и монтаже новых структурированных кабельных систем с волоконно-оптическими элементами основное внимание обращается на защиту трафика информационной системы от несанкционированного съёма [8], при этом угрозы другим видам информации остаются за рамками мероприятий по информационной безопасности. Одной из таких угроз является возможность несанкционированного съёма конфиденциальной речевой информации с использованием локальных волоконно-оптических кабельных систем, проложенных внутри помещений, зданий, территорий [8]. Волоконно-оптический кабель локальных информационных систем может проходить через технические и специальные помещения коммерческих и государственных учреждений, защищаемые от утечки речевой информации. В существующих инструкциях, рекомендациях и аналитических обзорах по информационной безопасности формирование канала утечки конфиденциальной речевой информации не обсуждается. Настоящая работа компенсирует возникающий пробел. В структуре любого канала утечки конфиденциальной речевой информации присутствуют следующие элементы [1,3-6]:
Если в любом канале утечки первый и последний элемент может быть одним и тем же, то технические средства разведки (ТСР) и среда передачи информации являются особыми, отличающими один от другого канал утечки. В случае использования оптоволокна для несанкционированного съёма конфиденциальной речевой информации ТСР включают описание физических принципов звуковой модуляции оптического потока в световоде и последующей демодуляции (рисунок 3.34). Распространяющийся в воздушной среде информативный звуковой сигнал воздействует на оптическое волокно с передаваемым оптическим сигналом данных. Акустическая волна, как волна механическая, воздействует на все элементы технических конструкций, расположенных на её пути, в том числе и на элементы волоконно-оптических коммуникаций, что приводит к модуляции интенсивности оптического излучения в канале связи звуковым сигналом. Промодулированное звуком световое излучение в оптоволокне выходит за пределы охраняемой зоны и может быть принято нарушителем. Описанный способ съёма информации можно назвать акусто-оптоволоконным каналом утечки. Возможность реализации акусто-оптоволоконного канала утечки связана с созданием световых потоков в кабельной системе и его модуляции звуком. Эффективность модуляции зависит от типа элемента волоконно-оптической структурированной кабельной системы, подвергаемой акустическому воздействию. Соединительные элементы, оптические неоднородности оптоволокна, конструктивные особенности монтажа различным образом откликаются на акустическое воздействие, но все они являются местами взаимодействия акустического поля и оптического потока, анализ которых позволяет определить степень опасности речевой информации. Типы акусто-оптоволоконных каналов утечки Проведем анализ и выделим наиболее опасные участки волоконно-оптических коммуникаций на возможность модуляции потока света акустическими колебаниями (речью). По типу пассивного волоконно-оптического оборудования и конструктивным особенностям прокладки кабеля в помещениях все каналы утечки можно разделить на три типа, которые обозначим буквами: A, B, C (рисунок 3.35) [8]. A. Механические контакты и соединения оптического волокна. Современное пассивное волоконно-оптическое оборудование включает большой набор различного вида коннекторов, розеток, переходников, разветвителей, аттенюаторов, муфт, шнуров, патч-кордов, сборок и других элементов, которые обеспечивают удобную прокладку и монтаж локальных волоконно-оптических сетей. Одним из важных элементов являются коннекторы, с помощью которых осуществляется механическое соединение оптических волокон с высокой эффективностью без их сварки. В зависимости от типа коннектора обеспечивается более 1000 соединений при вносимых потерях порядка 0,2 дБ. Величину вносимых потерь в пределах, не превышающих максимальных значений, модулируют упругие воздействия на оптический контакт волокон (рисунок 2А). Конструкция коннектора включает втулку по размеру волокна, в которую вставляются волокна с обработанными концами. Механическое соприкосновение фиксируется различными типами креплений - ST, FC, SC и другие. В любом случае при воздействии звука на соединение происходят различного типа колебания, влияющие на прохождение света через соединение и формирующие канал утечки. Злоумышленник может увеличить глубину модуляции светового потока звуком, если внести в конструкцию соединения эластичные элементы. Например, поместить между волокнами тонкую эластичную прокладку; сместить контакт по оси или поперёк волокон; специально обработать концы соединяемых волокон и произвести другие действия, увеличивающие упругие свойства соединения. B. Свободные участки волоконно-оптического кабеля с уплотнительными элементами. Оптоволокно обладает высокой чувствительностью к механическим воздействиям, даже небольшие колебания вызывают изменение условий прохождения света и, соответственно, интенсивности оптического потока. В волоконно-оптических локальных сетях для соединения компьютеров используют оптические кабели, содержащие от одного или двух волокон и более в сборках в зависимости от решаемых задач. Оптические волокна в кабеле защищают от внешнего воздействия специальные наполнители и кожух (внешняя оболочка), которые значительно уменьшают влияние вибраций, звука. Злоумышленник может повысить чувствительность волокна к звуковым колебаниям путём внесения под внешнюю оболочку кабеля специальных твердых включений, а также специальных зажимов кабеля, волокна и других приспособлений, обеспечивающих акустический контакт оптического волокна с окружающей воздушной средой (рисунок 3.35B). Причём формирование акустического контакта может быть произведено в любом месте оптического кабеля, а размер области контакта может не превышать нескольких миллиметров. Обнаружение подобных изменений в кабеле затруднено, так как оно может выглядеть как естественное состояние кабеля. C. Места крепления волоконно-оптического кабеля к элементам несущих конструкций здания. Ещё одним местом, потенциально опасным для формирования канала утечки, являются любые фиксированные контакты оптического шнура с конструкцией здания, коробками для соединения волокон, кабельными лотками (рисунок 3.35C). Например, специальные зажимы, фиксирующие проходящее внутри коммутационной панели волокно, а также другие особенности проводки кабеля. Особое внимание необходимо обратить на кабельные коробки для прокладки оптических шнуров - в них легко обеспечить скрытный акустический контакт с поверхностью короба. Они являются мембраной с большой поверхностью и обеспечивают хороший акустический контакт, как с волокном, так и с окружающим воздухом. Таблица 3.6. Экспериментальные оценки эффективности каналов утечки конфиденциальной речевой информации через волоконно-оптические коммуникации по методу артикуляционных исследований
Представленный анализ показывает высокую опасность формирования утечки речевой информации через волоконно-оптический кабель практически по всей его длине в линии связи. Оценить опасность создаваемого каждым из рассмотренных типов каналов утечки только на основе теоретических расчётов очень трудно из-за влияния многих факторов, поэтому наиболее эффективными могут быть экспериментальные исследования. Принципы реализации акусто-оптоволоконного канала утечки Обеспечить функционирование акусто-оптоволоконного канала утечки возможно при условиях, когда световой поток или уже существует, или специально создаётся в кабельной сети. Реализация каждого из способов зависит от режима работы активного оборудования и может быть разделена на два вида по состоянию сетевого оборудования [8]. • Режим активного состояния сетевого оборудования, когда используются потоки оптического сигнала в волоконно-оптическом канале для переноса речевой информации. Формирование канала утечки возможно путём модуляции на звуковой частоте интенсивности света части трафика и последующим проведением акустической демодуляции за пределами систем защиты. • Режим пассивного состояния сетевого оборудования. При отключённом оборудовании возможно временное подключение внешнего источника света из незащищённых помещений, чтобы активировать канал утечки и по отраженному излучению произвести съём информации. Существующие структурированные кабельные системы позволяют реализовать данный канал утечки, что связано с развитостью техники монтажа, возможностью соединения, ответвления оптических волокон. Каждый из режимов имеет свои особенности и требует отдельного обсуждения, но физические принципы остаются неизменными, причём переход с одного режима на другой не предусматривает необходимости конструктивных изменений канала утечки в месте акустической модуляции. Особенностью активного состояния является возможность формирования канала утечки без выключения сетевого оборудования, используя внешний источник света, который смещён по частоте от применяемой в линии связи.
Рис. 3.34. Структура акусто-оптоволоконного канала утечки конфиденциальной речевой информации 1 - акустический источник конфиденциальной информации, 2 - воздушная среда, 3 - акусто-вибрационное воздействие, 4 - акустические помехи, 5 - волоконно-оптический кабель, 6 - технические средства разведки (ТСР) конфиденциальной информации. Более подробно обсудим первый вид канала утечки, который может быть связан с закладными устройствами или использованием особенностей волоконно-оптического коммуникационного оборудования. Обычно локальная волоконно-оптическая информационная сеть работает на скоростях передачи данных, превышающих 100 Мб/сек, что соответствует частотам модуляции порядка 100 МГц. В этом случае заполнение волоконно-оптического канала связи при обычных объёмах передачи информации для частот звукового диапазона (порядка 10 кГц) представляется в виде сплошного потока света с небольшими разрывами между пакетами данных. Поток света становится практически непрерывным при повышении объёмов трафика. В регистрирующей аппаратуре происходит разделение сигналов по битам в зависимости от способа модуляции. При амплитудной модуляции, наиболее часто используемой в локальных сетях, регистрируются разные уровни нулевого и единичного сигналов или направление перехода (рост и падение). Различие уровней значительное, малое изменение интенсивности света воспринимается регистрирующей аппаратурой как шумы. При фазовой модуляции интенсивность не меняется, регистрируется только изменение фазы между битами. Наложение акустического сигнала на информационный оптический сигнал в оптическом волокне, при значениях меньше заложенных в аппаратуре как возможные отклонения, связанные с шумами, может быть не зафиксировано. В этом случае информационный оптический сигнал будет переносить вместе с данными пользователей и дополнительную речевую информацию, не регистрируемую коммуникационным оборудованием сети. Вывод дополнительной конфиденциальной речевой информации может быть осуществлен специальными методами или изменением параметров работы коммуникационного оборудования. В первом случае требуется установка в незащищённых помещениях рядом с источником речевой информации специального считывающего акустическую информацию устройства, а также создание отдельного канала передачи данных за пределы комнаты или её накопление на месте считывания. Во втором - необходимо провести перепрограммирование активного сетевого оборудования, а для передачи данных может быть использована та же самая локальная информационная сеть с выходом на незащищённый участок, где информация накапливается и забирается нарушителем.
Артикуляционный метод анализа каналов утечки речевой информации
Экспериментальное и теоретическое измерение эффективности функционирования канала утечки можно определить как отношение количества информации (J0) поступающей от её носителя, к количеству информации (J1), полученной на выходе ТСР
J0/J1)
• 100% . Практическая оценка эффективности реализации канала утечки связана со многими параметрами и зависит от её вида. В частности, для канала утечки речевой информации можно использовать метод артикуляционных исследований, суть которого заключается в определении разборчивости речи, полученной с помощью ТСР по данному каналу утечки. В качестве тестового сигнала предполагается использовать специально подобранный набор слов из тестов Покровского.
Рис. 3.35. Угрозы формирования канала утечки речевой информации типов A, B, C на примере отдельных волоконно-оптических элементов структурированной кабельной системы. Метод артикуляции основан на оценке степени выполнения главного требования, предъявляемого к разговорным трактам, -обеспечение разборчивой передачи речи через канал утечки акустической информации. Мерой разборчивости является величина W, определяемая как отношение числа N0 правильно принятых по испытуемому тракту элементов речи (звуков, слогов, слов или фраз) к достаточно большому общему числу N1 переданных элементов речи, выражаемая в процентах или в долях единицы. Таким образом, разборчивостью речи называют W=(N0/N1) •100% . В зависимости от полученной величины W обеспечивается качество акустической защиты элементов помещения или помещения в целом. Например, как показывает практический опыт, при словесной разборчивости [8]:
Рекомендованная Гостехкомиссией России для оценки и контроля защищённости речевой информации методика расчёта словесной разборчивости речи позволяет рассчитать и дать достаточно точную оценку допустимой разборчивости речи в зависимости от октавных уровней защищаемого речевого и акустического (вибрационного) шумового сигнала.
Рис. 3.36. Стенд по экспериментальному моделированию акусто-оптоволоконного канала утечки конфиденциальной речевой информации (I, II - акустически изолированные комнаты) 1 - источник непрерывного оптического излучения, 2 - приёмник оптического излучения, 3 - оптическое волокно, 4 - приборы предварительной обработки электрического сигнала, 5 - головная гарнитура оператора, 6 - исследуемый элемент волоконно-оптической системы передачи информации, 7 - акустическая система, 8 - микрофон системы контроля звукового воздействия, 9 - компьютерный пост управления акустическим воздействием и оптоволоконной связью, 10 - компьютер поста съёма речевой информации. Экспериментальное сравнение каналов утечки речевой информации Экспериментальная оценка эффективности утечки речевой информации для различных типов каналов производилась [8] на стенде волоконно-оптической системы передачи с основными опасными для защиты информации пассивными элементами (рисунок 3.36). Стенд включал источник света, волоконно-оптическую линию и приёмник оптического излучения (фотодиод). В качестве источника света использовался непрерывный гелий-неоновый лазер на длине волны 633 нм мощностью порядка 10 милливатт, излучение которого вводилось в волокно. Линия связи составлялась из патч-кордов с одномодовым и многомодовым волокном длиной 2, 3, 5 м, соединенных коннекторами нескольких типов (чаще всего применялась соединительная розетка типа FC-FC). В других случаях использовалась линия из сдвоенного оптоволокна общей длиной более 25 м, образующая замкнутое кольцо. Интенсивность оптического излучения регистрировалась кремниевым фотодиодом, электрический сигнал с которого подавался на селективный усилитель нановольтметра или специальный звуковой широкополосный усилитель. Далее электрический сигнал звукового диапазона частот выводился на наушники и анализировался в реальном времени оператором или поступал на аудио-карту компьютера поста съёма информации для регистрации на жёстком диске компьютера и последующей обработки. Моделирование конфиденциальных переговоров проводилось с помощью специальной программы чтения текстов с компьютера поста управления. Озвучивание с постоянным уровнем звукового давления проводилось вблизи от модельных каналов утечки. Контроль уровня звукового давления от акустической системы осуществлялся шумомером. Каналы утечки речевой информации моделировались с помощью участков оптоволокна с механическим контактом (канал утечки типа A), оптоволокна в защитной оболочке кабеля (канал утечки типа B) и зажатого между твёрдыми плоскими поверхностями кабеля (канал утечки типа C). Волоконно-оптическая линия с элементами акустического воздействия и оператор с компьютером поста съёма информации размещались в акустически изолированных соседних помещениях, что создавало реальность и повышало достоверность измерений. Как показывают экспериментальные исследования, все три типа каналов утечки позволяют проводить несанкционированный съём информации. Эффективность канала зависела от степени обработки оптоволокна, материалов и других параметров. Результаты экспериментальных исследований представлены в таблице 3.6. В соответствии с экспериментом, оценка словесной разборчивости W варьируется от 30 до 80%, в зависимости от типа канала утечки при отсутствии специальной обработки кабеля или коннекторов и при одинаковых прочих условиях. Это позволяет говорить о высокой опасности утечки конфиденциальной речевой информации. Особенно высокое значение разборчивости речи наблюдалось при зажиме оптического кабеля между твердыми поверхностями, что связано с большой плоскостью взаимодействия акустической волны и участка волокна. Фактически данная структура канала утечки работала как хороший микрофон. Проведённые экспериментальные исследования показали реальность формирования каналов утечки конфиденциальной акустической (речевой) информации через волоконно-оптические коммуникации, проходящие по охраняемым помещениям. Опасность появления таких каналов утечки акустической информации связана с особенностями воздействия акустического (речевого) сигнала на оптоволокно и волоконно-оптические элементы информационных коммуникаций учреждения. Выявлены наиболее опасные участки волоконно-оптических коммуникаций. Уменьшение величины разборчивости речи в каналах утечки речевой информации до уровня, обеспечивающего требования защиты акустической информации пассивными и активными способами защиты, будет рассмотрено в последующих работах. Эти способы защиты могут быть построены на тех же физических принципах, что и каналы утечки. Материалы статьи подготовлены в рамках выполнения задания по проекту «Моделирование комплексной защиты конфиденциальной речевой информации национальных языков на объектах коммуникации и информатизации» по аналитической ведомственной целевой программе «Развитие научного потенциала высшей школы (2009-2010 годы) на 2009 год». 3.5 Физические основы образования оптико-электронного канала утечки речевой информации Оптико-электронный канал утечки речевой информации образуется путем облучения лазерным лучом вибрирующих в акустическом поле тонких ограждающих конструкций (стекол, картин, зеркал). Схема простейшего лазерного подслушивающего устройства представлена на рисунке 3.37. Лазерное подслушивание является сравнительно новой технологией подслушивания. Лазерный микрофон позволяет осуществлять дистанционное прослушивание помещений по колебаниям оконного стекла. Данные колебания модулируют луч лазера, отражающийся от поверхности стекла и попадающий на фотоприемник для соответствующего преобразования и декодирования с помощью электронных устройств. Первые их образцы были приняты на вооружение американскими спецслужбами еще в 60-е годы. Луч лазера, отраженный от стекла помещения, в котором ведутся переговоры, оказывается промодулированным (по фазе) звуковой частотой. Принятый фотоприемником отраженный луч детектируется, звук усиливается и записывается. Приемник и передатчик выполнены раздельно, имеется блок компенсации помех. Вся аппаратура размещена в кейсе и имеет автономное питание, может быть помещена в доме, стоящем напротив окон комнаты.
Рис. 3.37. Схема лазерного подслушивания Качество принимаемой информации зависит от следующих факторов: - параметров используемого лазера(длина волны, мощность, когерентность и т.д.); - параметров фотоприемника (чувствительность и избирательность фотодетектора, вид обработки принимаемого сигнала и др.); - параметров атмосферы (рассеяние, поглощение, турбулентность, уровень фоновой засветки и др.); - качества обработки зондируемой поверхности (шероховатости, наличие неровностей и ДРП,); - уровня фоновых акустических шумов; - уровня перехваченного речевого сигнала. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|

,
,