Стоячие волны. Свойства стоячих волн.
Свет как электромагнитная волна
Природа света
Первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов (параболических зеркал, микроскопа, зрительной трубы) эти представления развивались и трансформировались. В конце XVII века возникли две теории света: корпускулярная (И. Ньютон) и волновая (Р. Гук и Х. Гюйгенс).
Волновая теория рассматривала свет как волновой процесс, подобный механическим волнам. В основу волновой теории был положен принцип Гюйгенса. Большая заслуга в развитии волновой теорий принадлежит английскому физику Т. Юнгу и французскому физику О. Френелю, исследовавшим явления интерференции и дифракции. Исчерпывающее объяснение этих явлений могло быть дано только на основе волновой теории. Важное экспериментальное подтверждение справедливости волновой теории было получено в 1851 году, когда Ж. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение υ < c.
Хотя к середине XIX века волновая теория была общепризнана, вопрос о природе световых волн оставался нерешенным.
В 60-е годы XIX века Максвеллом были установлены общие законы электромагнитного поля, которые привели его к заключению, что свет – это электромагнитные волны. Важным подтверждением такой точки зрения послужило совпадение скорости света в вакууме с электродинамической постоянной:
c=1ε0μ0−−−−√ c=1ε0μ0 .
Электромагнитная природа света получила признание после опытов Г. Герца (1887–1888 гг.) по исследованию электромагнитных волн. В начале XX века после опытов П. Н. Лебедева по измерению светового давления (1901 г.) электромагнитная теория света превратилась в твердо установленный факт.
Важнейшую роль в выяснении природы света сыграло опытное определение его скорости. Начиная с конца XVII века предпринимались неоднократные попытки измерения скорости света различными методами (астрономический метод А. Физо, метод А. Майкельсона). Современная лазерная техника позволяет измерять скорость света с очень высокой точностью на основе независимых измерений длины волны λ и частоты света ν (c = λ · ν). Таким путем было найдено значение c = 299792458 ± 1,2 м/с превосходящее по точности все ранее полученные значения более чем на два порядка.
Свет играет чрезвычайно важную роль в нашей жизни. Подавляющее количество информации об окружающем мире человек получает с помощью света. Однако в оптике как разделе физике под светом понимают не только видимый свет, но и примыкающие к нему широкие диапазоны спектра электромагнитного излучения – инфракрасный (ИК) и ультрафиолетовый (УФ). По своим физическим свойством свет принципиально неотличим от электромагнитного излучения других диапазонов – различные участки спектра отличаются друг от друга только длиной волны λ и частотой ν.
Для измерения длин волн в оптическом диапазоне используются единицы длины 1 нанометр (нм) и 1 микрометр (мкм):
1 нм = 10-9 м = 10-7 см = 10-3 мкм.
Видимый свет занимает диапазон приблизительно от 400 нм до 780 нм или от 0,40 мкм до 0,78 мкм.
Распространяющееся в пространстве периодически изменяющееся электромагнитное поле и представляет собой электромагнитную волну.
Наиболее существенные свойства света как электромагнитной волны
При распространении света в каждой точке пространства происходят периодически повторяющиеся изменения электрического и магнитного полей. Эти изменения удобно изображать в виде колебаний векторов напряженности электрического поля E⃗ E→ и индукции магнитного поля B⃗ B→ в каждой точке пространства. Свет — поперечная волна, так как E⃗⊥υ⃗ E→⊥υ→ и B⃗⊥υ⃗ B→⊥υ→ .
Колебания векторов E⃗ E→ и B⃗ B→ в каждой точке электромагнитной волны происходят в одинаковы фазах и по двум взаимно перпендикулярным направлениям E⃗⊥B⃗ E→⊥B→ в каждой точке пространства.
Период света как электромагнитной волны (частота) равен периоду (частоте) колебаний источника электромагнитных волн. Для электромагнитных волн справедливо соотношение λ=υ⋅T=υν λ=υ⋅T=υν . В вакууме λ0=c⋅T=cν λ0=c⋅T=cν – длина волны наибольшая по сравнению с λ в другой среде, так как ν = const и изменяется только υ и λ при переходе от одной среды к другой.
Свет является носителем энергии, причем перенос энергии совершается в направлении распространения волны. Объемная плотность энергии электромагнитной поля определяется выражением ωem=ε⋅ε0⋅E22+B22⋅μ⋅μ0 ωem=ε⋅ε0⋅E22+B22⋅μ⋅μ0
Свет, как и другие волны, распространяются прямолинейно в однородной среде, испытывают преломление при переходе из одной среды во вторую, отражаются от металлических преград. Для них характерны явления дифракции и интерференции.
Интерференция света
Для наблюдений интерференции волн на поверхности воды использовались два источника волн (два шарика, закрепленные на колеблющемся стерженьке). Получить интерференционную картину (чередование минимумов и максимумов освещенности) с помощью двух обычных независимых источников света, например двух электрических лампочек, невозможно. Включение еще одной лампочки лишь увеличивает освещенность поверхности, но не создает чередования минимумов и максимумов освещенности.
Для того чтобы при наложении световых волн наблюдалась устойчивая интерференционная картина, необходимо, чтобы волны были когерентны, т. е. имели одинаковую длину волны и постоянную разность фаз.
Почему световые волны от двух источников не когерентны?
Интерференционная картина от двух источников, которую мы описали, возникает только при сложении монохроматических волн одинаковых частот. У монохроматических волн разность фаз колебаний в любой точке пространства постоянна.
Волны с одинаковой частотой и постоянной разностью фаз называются когерентными.
Только когерентные волны, налагаясь друг на друга, дают устойчивую интерференционную картину с неизменным расположением в пространстве максимумов и минимумов колебаний. Световые же волны от двух независи-мых источников не являются когерентными. Атомы источников излучают свет независимо друг от друга отдельными «обрывками» (цугами) синусоидальных волн. Длительность непрерывного излучения атома около 10 с. За это время свет проходит путь длиной около 3 м (рис. 1).
Рис. 1
Эти цуги волн от обоих источников налагаются друг на друга. Разность фаз колебаний в любой точке пространства хаотически меняется со временем в зависимости от того, как в данный момент времени цуги от различных источников сдвинуты друг относительно друга. Волны от различных источников света некогерентны из-за того, что разность начальных фаз не остается постоянной. Фазы φ01 и φ02 меняются случайным образом, и из-за этого случайным образом меняется разность фаз результирующих колебаний в любой точке пространства.
При случайных обрывах и возникновениях колебаний разность фаз меняется беспорядочно, принимая за время наблюдения τ всевозможные значения от 0 до 2π. В результате за время τ много большее времени нерегулярных изменений фазы (порядка 10-8 с), среднее значение cos (φ1 – φ2) в формуле
I=4I0cos2φ1−φ22=2I0[1+cos(φ1−φ2)] I=4I0cos2φ1−φ22=2I0[1+cos(φ1−φ2)] .
равно нулю. Интенсивность света оказывается равной сумме интенсивностей от отдельных источников, и никакой интерференционной картины наблюдаться не будет. В некогерентности световых волн заключается главная причина того, что свет от двух источников не дает интерференционной картины. Это главная, но не единственная причина. Другая причина заключается в том, что длина световой волны, как мы скоро увидим, очень мала. Это сильно затрудняет наблюдение интерференции, если даже располагать когерентными источниками волн.
