Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Закон Стефана-Больцмана. Закон смещения Вина..docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
608.54 Кб
Скачать

§6 Квантовая гипотеза и формула Планка.

В 1900 году М. Планк (немецкий ученый) выдвинул гипотезу, согласно которой испускание и поглощение энергии происходит не непрерывно, а оп­ределенными малыми порциями - квантами, причем энергия кванта пропор­циональна частоте колебаний (формула Планка):

h = 6,625·10-34 Дж·с - постоянная Планка или

где

Так как излучение происходит порциями, то энергия осциллятора (колеб­лющегося атома, электрона) Е принимает лишь значения кратные целому чис­лу элементарных порций энергии, то есть только дискретные значения

Е = n Ео = n hν.

Фотоэлектрический эффект

Впервые влияние света на ход электрических процессов было изучено Герцем в 1887 году. Он проводил опыты с электрическим разрядником и об­наружил, что при облучении ультрафиолетовым излучением разряд происхо­дит при значительно меньшем напряжении.

 

 

 

В 1889-1895 гг. А.Г. Столетов изучал воздействие света на металлы, ис­пользуя следующую схему. Два электрода: катод К из исследуемого металла и анод А (в схеме Столетова – металлическая сетка,  пропускающая свет) в ваку­умной трубке подключены к батарее так, что с помощью сопротивления R можно изменять значение и знак подаваемого на них напряжения. При облу­чении цинкового катода в цепи протекал ток, регистрируемый миллиамперметром. Облучая катод светом различных длин волн, Столетов установил сле­дующие основные закономерности:

  • Наиболее сильное действие оказывает ультрафиолетовое излучение;

  • Под действием света из катода вырываются отрицательные заряды;

  • Сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

Ленард и Томсон в 1898 году измерили удельный заряд (е/m), вырывае­мых частиц, и  оказалось, что он равняется удельному заряду электрона, следо­вательно, из катода вырываются электроны.

§ 2 Внешний фотоэффект. Три закона внешнего фотоэффекта

Внешним фотоэффектом называется испускание электронов веществом под действием света. Электроны, вылетающие из вещества при внешнем фо­тоэффекте, называются фотоэлектронами, а образуемый ими ток называется фототоком.

 

 С помощью схемы Столетова  была получена следующая зависимость фото­тока от приложенного напряжения при неизменном световом потоке Ф (то есть была получена ВАХ – вольт- амперная характеристика):

 

 При некотором напряжении UН фототок достигает насыщения Iн – все электроны, испускаемые катодом, достигают анода, следовательно, сила тока насыщения Iн определяется количеством электронов, испускаемых катодом в единицу времени под действием света. Число высвобождаемых фотоэлектро­нов пропорционально числу падающих на поверхность катода квантов света. А количество квантов света определяется световым потоком Ф, падающим на катод. Число фотонов N, падающих за время t на поверхность определяется по формуле:   

где W – энергия излучения, получаемая поверхностью за время Δt,

- энергия фотона,

Фесветовой поток (мощность излучения).

1-й закон внешнего фотоэффекта (закон Столетова):

При фиксированной частоте падающего света фототок насыщения пропорционален падающему световому потоку:

Iнас ~ Ф, ν = const

 

 

 

 

 

Uз - задерживающее напряжение - напряжение, при котором ни одному электрону не удается долететь до анода. Следовательно, закон сохранения энергии в этом случае можно записать: энергия вылетающих электронов равна задерживающей энергии электрического поля

следовательно, можно найти максимальную скорость вылетающих фотоэлектронов Vmax

2- й закон фотоэффекта: максимальная начальная скорость Vmax фото­электронов не зависит от интенсивности падающего света (от Ф), а определя­ется только его частотой ν

 3- й закон фотоэффекта: для каждого вещества существует "красная граница'' фотоэффекта, то есть минимальная частота νкp, зависящая от химической природы вещества и состояния его поверхности, при которой ещё возможен внешний фотоэффект.

Второй и третий законы фотоэффекта нельзя объяснить с помощью вол­новой природы света (или классической электромагнитной теории света). Со­гласно этой теории вырывание электронов проводимости из металла является результатом их "раскачивания" электромагнитным полем световой волны. При увеличении интенсивности света (Ф) должна увеличиваться энергия, переда­ваемая электроном металла, следовательно, должна увеличиваться Vmax, а это противоречат 2-му закону фотоэффекта.

Так как по волновой теории энергия, передаваемая электромагнитным полем пропорциональна интенсивности света (Ф), то свет любой; частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла, то есть красной границы фотоэффекта не существовало бы, что про­тиворечит 3-му закону фотоэффекта. Внешний фотоэффект является безынерционным. А волновая теория не может объяснить его безынерционность.