Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гипотеза Де Бройля. Электронная микроскопия. Волновая функция..docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.81 Mб
Скачать

§ 23.3. Волновая функция и её физический смысл

Так как с микрочастицей сопоставляют волновой процесс, ко­торый соответствует ее движению, то состояние частиц в кванто­вой механике описывается волновой функцией, зависящей от ко­ординат и времени: Эта функция аналогична функ­ции s (см. § 5.7), описывающей волновой процесс в механике.

Если силовое поле, действующее на частицу, является стаци­онарным, т. е. не зависящим от времени, то -функцию можно представить в виде произведения двух сомножителей, один из ко­торых зависит от времени, а другой — от координат:

(23.5)

В дальнейшем будем рассматривать только стационарные состоя­ния; y-функция координат является вероятностной характеристи­кой пространственной локализации частицы. Поясним смысл этого утверждения.

Выделим в пространстве достаточно малый объем dV = dxdydz, в пределах которого значения функции можно считать одинако­выми. Вероятность нахождения dWB частицы в этом объеме про­порциональна объему и определяется, согласно М. Борну, квадра­том модуля y-функции:

(23.6)

Отсюда следует физический смысл волновой функции:

(23.7)

т. е. квадрат модуля волновой функции равен плотности ве­роятности, или отношению вероятности нахождения части­цы в малом объеме dV к этому объему.

Интегрируя выражение (23.6) по некоторому объему V, нахо­дим вероятность нахождения частицы в этом объеме:

(23.8)

Отсюда получаем условие нормировки волновой функции в виде , где интегрирование ведется по всему бесконечному пространству, вероятность нахождения в котором частицы равна единице.

 

 

§ 23.4. Соотношения неопределенностей

Одним из важных положений квантовой механики являются соотношения неопределенностей, предложенные В. Гейзенбергом. Существуют различные пары физических величин (называемые канонически сопряженными переменными), которые могут быть одновременно определены лишь с ограниченной точностью.

Пусть одновременно измеряют положение и импульс частицы, при этом неопределенности в измерении координаты и проекции импульса на эту координатную ось, например х, равны соответ­ственно

В классической физике нет каких-либо ограничений, запре­щающих с любой степенью точности одновременно измерить как одну, так и другую величину, т. е.

В квантовой механике положение принципиально иное: и Dрх, соответствующие одновременному определению х и рх, связа­ны зависимостью

(23.9)

Таким образом, чем точнее определена координата

,

тем менее точно определена соответствующая проекцияим- импульса , и наоборот. Аналогично для у и г:

(23.10)

Формулы (23.9), (23.10) называют соотношениями неопределен­ностей для координат и импульсов. Вычисления, проделанные для электрона, показывают, что его локализация внутри атомного ядра невозможна, т. к. в этом случае неопределенность его скорости должна превысить величину скорости све­та. Действительно, если м (размер ядра атома), то из (23.9) сле­дует, что величина Apv должна превы­сить , следовательно, неопределенность ско­рости электрона , тогда как скорость света равна

Еще одной парой канонически сопряженных переменных яв­ляются энергия частицы Е и время t. Соотношение неопределен­ностей для этих переменных имеет вид

(23.11)

где — неопределенность энергии некоторого состояния систе­мы, — время его существования. Соотношение (23.11) означа­ет, что чем короче время существования какого-либо состояния системы, тем больше неопределенность значения энергии этого состояния. Энергетические уровни (дискретные значения энер­гии) E1 Е2 и т. д. имеют некоторую ширину (рис. 23.4), завися­щую от времени пребывания (времени жизни) системы в состоя­ниях, соответствующих этим уровням энергии.

«Размытость» уровней приводит к неопределенности энергии излучаемого фотона и его частоты при переходе системы с одного энергетического уровня на другой:

(23.12)

Это экспериментально проявляется в уширении спектральных линий.