- •2. Автокорреляция случайных возмущений: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях автокорреляции
- •3.Алгоритм проверки адекватности множественной регрессионной модели
- •4. Алгоритм проверки значимости регрессоров в множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики
- •5. Анализ влияния факторов на зависимую переменную по модели регрессии
- •6. Анализ матрицы коэффициентов парной корреляции. Проверка значимости коэффициентов корреляции
- •7. Способы включения случайного возмущения в спецификацию нелинейной модели
- •8. Гетероскедастичность случайного возмущения: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях гетероскедастичности
- •9. Диагностика эконометрических моделей: тестирование гетероскедастичности случайного возмущения (тест Голдфельда-Квандта)
- •10. Диагностика эконометрических моделей: тестирование гетероскедастичности случайного возмущения (тест Уайта)
- •11. Диагностика эконометрических моделей: тестирование значимости структурных изменений в экономике (тест Чоу)
- •12. Диагностика эконометрических моделей: тестирование функциональной формы (тест Рэмси reset)
- •13. Классификация эконометрических моделей для панельных данных
- •14. Классическая множественная регрессионная модель: спецификация, предпосылки
- •15. Классическая множественная регрессионная модель: числовые характеристики вектора мнк-оценок параметров.
- •16. Классическая множественная регрессионная модель: числовые характеристики вектора оценок эндогенной переменной
- •17. Классическая множественная регрессионная модель: числовые характеристики вектора ошибок прогнозов
- •19. Линейно-вероятностная модель с дискретной зависимой переменной. Спецификация модели
- •20. Матричная форма метода наименьших квадратов: спецификация множественной регрессионной модели в матричной форме, вывод оценки вектора параметров модели
- •21. Методы обнаружения мультиколлинеарности
- •22. Модели бинарного выбора. Логит и пробит модели
- •23. Модель панельных данных со случайными эффектами
- •24. Объединённая модель панельных данных
- •25. Модели для панельных данных: типы моделей
- •26. Модель бинарного выбора: Спецификация модели. Оценка параметров модели методом максимального правдоподобия
- •Линейно-вероятностная модель (lpm-Linear Probability Model)
- •27. Мультиколлинеарность и методы ее устранения
- •28. Обобщенный метод наименьших квадратов
- •29. Обобщенный метод наименьших квадратов структурных изменений в экономике: использование фиктивных переменных, тест Чоу
- •30. Определение структурных изменений в экономике: использование фиктивных переменных, тест Чоу
- •31. Основные числовые характеристики вектора остатков в классической множественной регрессионной модели. Оценка дисперсии возмущений модели множественной регрессии
- •32. Основные этапы эконометрического моделирования
- •Сбор статистической информации об объекте исследования
- •Оценка параметров модели (параметризация, настройка)
- •Проверка адекватности модели (верификация)
- •33. Оценка параметров парной регрессионной модели методом наименьших квадратов (суть метода, вывод формул для нахождения оценок коэффициентов через систему нормальных уравнений)
- •35. Показатели качества модели: коэффициент детерминации (обычный, скорректированный)
- •36. Пошаговые процедуры отбора факторов в модель регрессии
- •38. Проблема мультиколлинеарности в моделях множественной регрессии. Виды мультиколлинеарности, признаки, последствия
- •39. Проблема мультиколлинеарности в моделях множественной регрессии: полная мультиколлинеарность (определение, последствия, пример способа устранения)
- •40. Последствия и признаки частичной мультиколлинеарности
- •41. Прогнозирование на основе модели множественной регрессии
- •42. Свойства оценок мнк (определения и смысл)
- •43. Структурная и приведённая формы спецификации эконометрических моделей
- •44. Схема проведения эконометрических исследований (краткая характеристика каждого этапа)
- •46. Тест Бреуша-Годфри на наличие (отсутствие) автокорреляции случайных возмущений: предпосылки, нулевая гипотеза, тестовая статистика, алгоритм
- •47. Тест Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений: предпосылки, нулевая гипотеза, тестовая статистика, алгоритм
- •48. Тестирование мультиколлинеарности. Метод Фаррара-Глоубера
- •49. Типы нелинейности эконометрических моделей. Оценивание эконометрических моделей нелинейных по переменным
- •51. Модель Кобба-Дугласа. Оценка линеаризуемой нелинейной модели и проверка ее адекватности.
- •52. Типы переменных в эконометрических моделях. Типы экономических моделей (примеры)
- •Модели временных рядов;
- •Регрессионные модели с одним уравнением;
- •Системы одновременных уравнений
- •53. Фиктивные переменные наклона. Спецификация моделей. Примеры
- •54. Фиктивные переменные: определение, назначение, типы (спецификация, смысл параметра при фиктивной переменной)
- •55. Эконометрическое исследование: определение, задача, цель, метод. Назначение эконометрических моделей
- •56. Доступный метод взвешенных наименьших квадратов: способ корректировки переменных; числовые характеристики возмущений в преобразованной модели
- •57. Способы корректировки автокорреляции: алгоритм метода Кохрейна-Оркатта.
- •58. Способы корректировки автокорреляции: алгоритм метода Хилдрета-Лу
- •59. Способы корректировки автокорреляции: поправка Прайса-Уинстона в авторегрессионной схеме первого порядка
- •60. Методы обнаружения мультиколлинеарности. Метод дополнительных регрессий
21. Методы обнаружения мультиколлинеарности
Мультиколлинеарностью для линейной множественной регрессии называется наличие линейной зависимости между факторными переменными, включёнными в модель. Мультиколлинеарность – нарушение одного из основных условий, лежащих в основе построения линейной модели множественной регрессии. Мультиколлинеарность в матричном виде – это зависимость между столбцами матрицы факторных переменных Х.
Конкретных методов обнаружения мультиколлинеарности не существует, а принято применять ряд эмпирических приёмов. В большинстве случаев множественный регрессионный анализ начинается с рассмотрения корреляционной матрицы факторных переменных R или матрицы (ХТХ).
При рассмотрении матрицы с целью выявления мультиколлинеарных факторов руководствуются следующими правилами:
1) если в корреляционной матрице факторных переменных присутствуют коэффициенты парной корреляции по абсолютной величине большие 0,8, то делают вывод, что в данной модели множественной регрессии существует мультиколлинеарность; 2) вычисляют собственные числа корреляционной матрицы факторных переменных λmin и λmax. Если λmin‹10-5, то в модели регрессии присутствует мультиколлинеарность. Если отношение
то
также делают вывод о наличии
мультиколлинеарных факторных переменных;
3) вычисляют определитель корреляционной матрицы факторных переменных. Если его величина очень мала, то в модели регрессии присутствует мультиколлинеарность.
22. Модели бинарного выбора. Логит и пробит модели
Моделью бинарного выбора называется модель регрессии, в которой результативная переменная может принимать только узкий круг заранее заданных значений
В качестве примеров бинарных результативных переменных можно привести:
Модель бинарного выбора называется пробит-моделью или пробит-регрессией (probit regression), если она удовлетворяет двум условиям:
1) остатки модели бинарного выбора ?i являются случайными нормально распределёнными величинами;
2) функция распределения вероятностей является нормальной вероятностной функцией.
Пробит-регрессия может быть представлена с помощью выражения:
NP(yi)=NP(?0+?1x1i+…+?kxki),
где NP – это нормальная вероятность (normal probability).
Модель бинарного выбора называется логит-моделью или логит-регрессией (logit regression), если случайные остатки ?i подчиняются логистическому закону распределения.
Логит-регрессия может быть представлена с помощью выражения:
Данная модель логит-регрессии характеризуется тем, что при любых значениях факторных переменных и коэффициентов регрессии, значения результативной переменной yi будут всегда лежать в интервале [0;+1].
Обобщённый вид модели логит-регрессии:
23. Модель панельных данных со случайными эффектами
Модель панельных данных со случайными эффектами (random effect model) опирается на структуру панельных данных, что позволяет учитывать неизмеримые индивидуальные различия объектов. Эти отличия называются эффектами. В данной модели предполагается, что индивидуальные отличия носят случайный характер.
Введем обозначения:
–
номера
объектов,
–
моменты времени,
–
число признаков.
–
набор
независимых переменных (вектор
размерности
)
–
зависимая
переменная для экономической единицы
в
момент времени
–
соответствующая
ошибка.
Обозначим также:
Введем также «объединенные» наблюдения и ошибки:
Здесь
–
векторы,
–
матрица.
Описание модели панельных данных со случайными эффектами
Во введенных обозначениях модель панельных данных со случайными эффектами описывается уравнением
(1)
,
где
–
константа, а
–
случайная ошибка, инвариантная по
времени для каждого объекта.
Параметры
модели:
.
Основные предположения:
Предположим, что выполнены следующие условия:
ошибки некоррелированы между собой по и ,
,
;
ошибки некоррелированы с регрессорами
при
всех
;
ошибки некоррелированы между собой по ,
,
;
ошибки некоррелированы с регрессорами
при
всех
:
;
ошибки и некоррелированы при всех :
.
Оценка параметров модели:
Модель
со случайным эффектом (1)
можно рассматривать как линейную модель,
в которой ошибка
имеет
некоторую специальную структуру. Будем
рассматривать модель:
(2)
.
Для получения
оценок параметров
можно
применить обычный метод
наименьших квадратов.
Условия 1)-3) гарантируют несмещённостьи
состоятельностьэтих
оценок. Однако ошибки в (2)
не являются гомоскедастичными, поэтому
для построения эффективных оценок можно
воспользоваться обобщенным
методом наименьших квадратов.
Описание модели панельных данных с фиксированными эффектами
В введенных обозначениях модель панельных данных с фиксированными эффектами описывается уравнением
(1)
.
Величина
выражает индивидуальный эффект объекта
,
не зависящий от времени
,
при этом регрессоры
не содержат константу .
Параметры
модели:
.
Основные предположения
Предположим, что выполнены следующие условия:
ошибки некоррелированы между собой по и , , ;
ошибки некоррелированы с регрессорами при всех .
Понижение размерности. Исключение эффектов.
Для
панельных данных типична ситуация,
когда число объектов
достаточно
велико. Поэтому, применяя непосредственно
метод
наименьших квадратов к
уравнению (1),
при оценивании параметров можно
столкнуться с вычислительными проблемами.
Их можно преодолеть, исключая из
рассмотрения индивидуальные эффекты
.
При этом мы понижаем размерность
задачи с
до
.
Наиболее простой способ – переход в уравнении (1) к средним по времени величинам:
(2)
,
где
.
Вычитая почленно (2) из (1), получаем:
(3)
.
Данная модель уже не зависит от эффектов . По существу, это уравнение (1), записанное в отклонениях от индивидуальных средних по времени.
Оценка параметров модели
Применяя обычный метод наименьших квадратов к уравнению (3), мы получим оценки
(4)
Эти оценки называются внутригрупповыми оценками ( within estimator) или оценками с фиксированным эффектом (fixed effect estimator).
Условия 1)-2), наложенные на модель, гарантируют несмещённостьи состоятельностьоценок с фиксированным эффектом.
В качестве оценок индивидуальных эффектов можно взять
.
Эти
оценки являются несмещённымии
состоятельнымидля
фиксированного
при
.
Из
формулы (4)
вытекает выражение для матрицы
ковариации оценки
:
.
Как
и в обычной линейной модели, в качестве
оценки дисперсии
можно
взять сумму
квадратов остатков регрессии,
деленную на число степеней свободы:
При
достаточно слабых условиях регулярности
оценки с фиксированным эффектом являются
асимптотически нормальными (при
или
при
),
поэтому можно пользоваться стандартными
процедурами (
-тесты,
-тесты)
для проверки гипотез относительно
параметров
.
Недостатки модели панельных данных с фиксированными эффектами
В панельных данных среди независимых переменных могут быть такие, которые не меняются во времени для каждого объекта. Например, при анализе зарабатной платы в число факторов часто включают пол или расовую принадлежность. Модель с фиксированным эффектом не позволяет идентифицировать соответствующие таким переменным коэффициенты. Формально это объясняется тем, что в уравнении (3) один или несколько регрессоров равны нулю, и, следовательно, метод наименьших квадратовприменять нельзя.
