- •2. Автокорреляция случайных возмущений: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях автокорреляции
- •3.Алгоритм проверки адекватности множественной регрессионной модели
- •4. Алгоритм проверки значимости регрессоров в множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики
- •5. Анализ влияния факторов на зависимую переменную по модели регрессии
- •6. Анализ матрицы коэффициентов парной корреляции. Проверка значимости коэффициентов корреляции
- •7. Способы включения случайного возмущения в спецификацию нелинейной модели
- •8. Гетероскедастичность случайного возмущения: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях гетероскедастичности
- •9. Диагностика эконометрических моделей: тестирование гетероскедастичности случайного возмущения (тест Голдфельда-Квандта)
- •10. Диагностика эконометрических моделей: тестирование гетероскедастичности случайного возмущения (тест Уайта)
- •11. Диагностика эконометрических моделей: тестирование значимости структурных изменений в экономике (тест Чоу)
- •12. Диагностика эконометрических моделей: тестирование функциональной формы (тест Рэмси reset)
- •13. Классификация эконометрических моделей для панельных данных
- •14. Классическая множественная регрессионная модель: спецификация, предпосылки
- •15. Классическая множественная регрессионная модель: числовые характеристики вектора мнк-оценок параметров.
- •16. Классическая множественная регрессионная модель: числовые характеристики вектора оценок эндогенной переменной
- •17. Классическая множественная регрессионная модель: числовые характеристики вектора ошибок прогнозов
- •19. Линейно-вероятностная модель с дискретной зависимой переменной. Спецификация модели
- •20. Матричная форма метода наименьших квадратов: спецификация множественной регрессионной модели в матричной форме, вывод оценки вектора параметров модели
- •21. Методы обнаружения мультиколлинеарности
- •22. Модели бинарного выбора. Логит и пробит модели
- •23. Модель панельных данных со случайными эффектами
- •24. Объединённая модель панельных данных
- •25. Модели для панельных данных: типы моделей
- •26. Модель бинарного выбора: Спецификация модели. Оценка параметров модели методом максимального правдоподобия
- •Линейно-вероятностная модель (lpm-Linear Probability Model)
- •27. Мультиколлинеарность и методы ее устранения
- •28. Обобщенный метод наименьших квадратов
- •29. Обобщенный метод наименьших квадратов структурных изменений в экономике: использование фиктивных переменных, тест Чоу
- •30. Определение структурных изменений в экономике: использование фиктивных переменных, тест Чоу
- •31. Основные числовые характеристики вектора остатков в классической множественной регрессионной модели. Оценка дисперсии возмущений модели множественной регрессии
- •32. Основные этапы эконометрического моделирования
- •Сбор статистической информации об объекте исследования
- •Оценка параметров модели (параметризация, настройка)
- •Проверка адекватности модели (верификация)
- •33. Оценка параметров парной регрессионной модели методом наименьших квадратов (суть метода, вывод формул для нахождения оценок коэффициентов через систему нормальных уравнений)
- •35. Показатели качества модели: коэффициент детерминации (обычный, скорректированный)
- •36. Пошаговые процедуры отбора факторов в модель регрессии
- •38. Проблема мультиколлинеарности в моделях множественной регрессии. Виды мультиколлинеарности, признаки, последствия
- •39. Проблема мультиколлинеарности в моделях множественной регрессии: полная мультиколлинеарность (определение, последствия, пример способа устранения)
- •40. Последствия и признаки частичной мультиколлинеарности
- •41. Прогнозирование на основе модели множественной регрессии
- •42. Свойства оценок мнк (определения и смысл)
- •43. Структурная и приведённая формы спецификации эконометрических моделей
- •44. Схема проведения эконометрических исследований (краткая характеристика каждого этапа)
- •46. Тест Бреуша-Годфри на наличие (отсутствие) автокорреляции случайных возмущений: предпосылки, нулевая гипотеза, тестовая статистика, алгоритм
- •47. Тест Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений: предпосылки, нулевая гипотеза, тестовая статистика, алгоритм
- •48. Тестирование мультиколлинеарности. Метод Фаррара-Глоубера
- •49. Типы нелинейности эконометрических моделей. Оценивание эконометрических моделей нелинейных по переменным
- •51. Модель Кобба-Дугласа. Оценка линеаризуемой нелинейной модели и проверка ее адекватности.
- •52. Типы переменных в эконометрических моделях. Типы экономических моделей (примеры)
- •Модели временных рядов;
- •Регрессионные модели с одним уравнением;
- •Системы одновременных уравнений
- •53. Фиктивные переменные наклона. Спецификация моделей. Примеры
- •54. Фиктивные переменные: определение, назначение, типы (спецификация, смысл параметра при фиктивной переменной)
- •55. Эконометрическое исследование: определение, задача, цель, метод. Назначение эконометрических моделей
- •56. Доступный метод взвешенных наименьших квадратов: способ корректировки переменных; числовые характеристики возмущений в преобразованной модели
- •57. Способы корректировки автокорреляции: алгоритм метода Кохрейна-Оркатта.
- •58. Способы корректировки автокорреляции: алгоритм метода Хилдрета-Лу
- •59. Способы корректировки автокорреляции: поправка Прайса-Уинстона в авторегрессионной схеме первого порядка
- •60. Методы обнаружения мультиколлинеарности. Метод дополнительных регрессий
19. Линейно-вероятностная модель с дискретной зависимой переменной. Спецификация модели
Кроме того, в классической регрессионной модели предполагалось, что ошибки имеют стандартное нормальное распределение. В то же время часто бывает, что зависимая переменная является дискретной.
Примеры:
Покупать ли автомобиль;
Идти ли на выборы;
Способ попадания из дома на работу (пешком, на метро, наземным общественным транспортом или на личном автомобиле);
Выбрать ли для отдыха авиа – или автобусный тур;
Переехать ли на постоянное место жительства в другой регион и т.п.
Если есть только два возможных значения зависимой переменной, то такие модели будут называться моделями бинарного выбора. Для таких моделей зависимая переменная, которая может иметь нечисловую переменную, принимает значения 0 или 1. Формально применение МНК для таких моделей возможно, но есть несколько «подводных камней». Рассмотрим линейную вероятностную модель и те проблемы, которые возникают при ее интерпретации.
Линейная вероятностная модель.
В рамках этой модели:
1 - если событие произошло;
0 - если не произошло Yt Yi 1 2 Xi ui ui, E 0
Yi = E Yi Xi
Таким образом, мы представляем Y как сумму детерминированной части и случайного возмущения. Пока формально все как и прежде. Но: Y может принимать только два значения 0 и 1.
Значит, выражение 1 = 2 Xi имеет смысл вероятности, и, следовательно, значения выражения должны лежать в пределах 0; 1
Основные недостатки линейной вероятностной модели: Остатки распределены не нормально: их распределение и вовсе является дискретным
В силу перечисленных недостатков, линейная вероятностная модель редко находит применение на практике.
20. Матричная форма метода наименьших квадратов: спецификация множественной регрессионной модели в матричной форме, вывод оценки вектора параметров модели
Метод наименьших квадратов— математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции.
Метод
наименьших квадратов (МНК)
дает оценки, имеющие н а и м е н ь ш у ю
дисперсию в классе всех линейных оценок,
если выполняются предпосылки нормальной
линейной регрессионной модели. МНК
минимизирует сумму квадратов отклонения
наблюдаемых значений 𝑦𝑖
от модельных значений
.
Оценки, полученные по МНК, обладают
свойствами
несмещенности, эффективности и
состоятельности.
Несмещенность
оценки означает, что математическое
ожидание остатков равно нулю. Если
оценки обладают свойством несмещенности,
то их можно сравнивать по разным
исследованиям. Оценки считаются
эффективными,
если они характеризуются наименьшей
дисперсией. Поэтому несмещенность
оценки должна дополняться минимальной
дисперсией. Достоверность доверительных
интервалов параметров регрессии
обеспечивается, если оценки будут не
только несмещенными и эффективными, но
и состоятельными. Состоятельность
оценокхарактеризует увеличение их
точностис увеличением объема выборки.
