- •2. Автокорреляция случайных возмущений: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях автокорреляции
- •3.Алгоритм проверки адекватности множественной регрессионной модели
- •4. Алгоритм проверки значимости регрессоров в множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики
- •5. Анализ влияния факторов на зависимую переменную по модели регрессии
- •6. Анализ матрицы коэффициентов парной корреляции. Проверка значимости коэффициентов корреляции
- •7. Способы включения случайного возмущения в спецификацию нелинейной модели
- •8. Гетероскедастичность случайного возмущения: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях гетероскедастичности
- •9. Диагностика эконометрических моделей: тестирование гетероскедастичности случайного возмущения (тест Голдфельда-Квандта)
- •10. Диагностика эконометрических моделей: тестирование гетероскедастичности случайного возмущения (тест Уайта)
- •11. Диагностика эконометрических моделей: тестирование значимости структурных изменений в экономике (тест Чоу)
- •12. Диагностика эконометрических моделей: тестирование функциональной формы (тест Рэмси reset)
- •13. Классификация эконометрических моделей для панельных данных
- •14. Классическая множественная регрессионная модель: спецификация, предпосылки
- •15. Классическая множественная регрессионная модель: числовые характеристики вектора мнк-оценок параметров.
- •16. Классическая множественная регрессионная модель: числовые характеристики вектора оценок эндогенной переменной
- •17. Классическая множественная регрессионная модель: числовые характеристики вектора ошибок прогнозов
- •19. Линейно-вероятностная модель с дискретной зависимой переменной. Спецификация модели
- •20. Матричная форма метода наименьших квадратов: спецификация множественной регрессионной модели в матричной форме, вывод оценки вектора параметров модели
- •21. Методы обнаружения мультиколлинеарности
- •22. Модели бинарного выбора. Логит и пробит модели
- •23. Модель панельных данных со случайными эффектами
- •24. Объединённая модель панельных данных
- •25. Модели для панельных данных: типы моделей
- •26. Модель бинарного выбора: Спецификация модели. Оценка параметров модели методом максимального правдоподобия
- •Линейно-вероятностная модель (lpm-Linear Probability Model)
- •27. Мультиколлинеарность и методы ее устранения
- •28. Обобщенный метод наименьших квадратов
- •29. Обобщенный метод наименьших квадратов структурных изменений в экономике: использование фиктивных переменных, тест Чоу
- •30. Определение структурных изменений в экономике: использование фиктивных переменных, тест Чоу
- •31. Основные числовые характеристики вектора остатков в классической множественной регрессионной модели. Оценка дисперсии возмущений модели множественной регрессии
- •32. Основные этапы эконометрического моделирования
- •Сбор статистической информации об объекте исследования
- •Оценка параметров модели (параметризация, настройка)
- •Проверка адекватности модели (верификация)
- •33. Оценка параметров парной регрессионной модели методом наименьших квадратов (суть метода, вывод формул для нахождения оценок коэффициентов через систему нормальных уравнений)
- •35. Показатели качества модели: коэффициент детерминации (обычный, скорректированный)
- •36. Пошаговые процедуры отбора факторов в модель регрессии
- •38. Проблема мультиколлинеарности в моделях множественной регрессии. Виды мультиколлинеарности, признаки, последствия
- •39. Проблема мультиколлинеарности в моделях множественной регрессии: полная мультиколлинеарность (определение, последствия, пример способа устранения)
- •40. Последствия и признаки частичной мультиколлинеарности
- •41. Прогнозирование на основе модели множественной регрессии
- •42. Свойства оценок мнк (определения и смысл)
- •43. Структурная и приведённая формы спецификации эконометрических моделей
- •44. Схема проведения эконометрических исследований (краткая характеристика каждого этапа)
- •46. Тест Бреуша-Годфри на наличие (отсутствие) автокорреляции случайных возмущений: предпосылки, нулевая гипотеза, тестовая статистика, алгоритм
- •47. Тест Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений: предпосылки, нулевая гипотеза, тестовая статистика, алгоритм
- •48. Тестирование мультиколлинеарности. Метод Фаррара-Глоубера
- •49. Типы нелинейности эконометрических моделей. Оценивание эконометрических моделей нелинейных по переменным
- •51. Модель Кобба-Дугласа. Оценка линеаризуемой нелинейной модели и проверка ее адекватности.
- •52. Типы переменных в эконометрических моделях. Типы экономических моделей (примеры)
- •Модели временных рядов;
- •Регрессионные модели с одним уравнением;
- •Системы одновременных уравнений
- •53. Фиктивные переменные наклона. Спецификация моделей. Примеры
- •54. Фиктивные переменные: определение, назначение, типы (спецификация, смысл параметра при фиктивной переменной)
- •55. Эконометрическое исследование: определение, задача, цель, метод. Назначение эконометрических моделей
- •56. Доступный метод взвешенных наименьших квадратов: способ корректировки переменных; числовые характеристики возмущений в преобразованной модели
- •57. Способы корректировки автокорреляции: алгоритм метода Кохрейна-Оркатта.
- •58. Способы корректировки автокорреляции: алгоритм метода Хилдрета-Лу
- •59. Способы корректировки автокорреляции: поправка Прайса-Уинстона в авторегрессионной схеме первого порядка
- •60. Методы обнаружения мультиколлинеарности. Метод дополнительных регрессий
7. Способы включения случайного возмущения в спецификацию нелинейной модели
Гетероскедастичность случайного возмущения – это нарушение условиягомоскедастичности, или равноизменчивости возмущений означающее, что дисперсия возмущения зависит от значений факторов.
Алгоритм теста Голфелда-Квандта:Данный тест используется для такого типа гетероскедастичности, когда дисперсия остатков возрастает пропорционально квадрату фактора. При этом делается предположение, что случайная составляющая ε распределена нормально. Чтобы оценить нарушение гомоскедастичности по тесту Голфелда-Квандта, необходимо выполнить следующие шаги:1) Упорядочить nнаблюдение по мере возрастания переменой X. 2)Исключить dсредних наблюдений (dдолжно быть примерно равно ¼ общего количества наблюдений) 3) Разделить совокупность на 2 группы (соответственно с малыми и большими значениями фактора X) и определить по каждой из групп уравнение регрессии 4)Определить остаточную сумму квадратов для первой регрессии .
Модель называется автокоррелированной, если не выполняется третья предпосылка теоремы Гаусса-Маркова: Cov(ui,uj)≠0 при i≠j. Те между ними есть зависимость.
Согласно теореме Гаусса-Маркова, Метод наименьших квадратов, приведённый к линейному преобразованию матриц или к системе линейных уравнений, обеспечивает наилучшую несмещенную, эффективную и сходящуюся к пределу (“состоятельную”) оценку вектора параметров, т.е. наилучшее качество линейной модели, если соблюдаются условия (по [ 1 ]):
1. Линейная модель соответствует действительности.
2. Существует дисперсия регрессора.
3. Математическое ожидание возмущения равно нулю: E(ui) = 0.
4. Возмущение имеет нормальное распределение.
5. Равенство ожидаемых значений дисперсий возмущений в разных диапазонах Х: E(u2) = Const. Это свойство называется гомоскедастичность, его несоблюдние – гетероскедастичность.
8. Гетероскедастичность случайного возмущения: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях гетероскедастичности
Гетероскедастичность случайного возмущения – это нарушение условиягомоскедастичности, или равноизменчивости возмущений означающее, что дисперсия возмущения зависит от значений факторов.
Причины гетероскедастичности:
Неоднородность исследуемых объектов (например, если исследуется зависимость спроса от дохода потребителя, то обнаруживается, что чем больше доход, тем больше индивидуальное значение спроса колеблется относительно ожидаемого значения)
Характер наблюдений (например, временной ряд)
Последствия гетероскедастичности:
1.Оценки коэффициентов по-прежнему останутся несмещенными илинейными.
2. Оценки не будут эффективными (не будут иметь наименьшую дисперсию по сравнению с другими оценками такого же параметра). При увеличении дисперсии оценок снижается вероятность получения максимально точныхоценок.
3. Дисперсии оценок будут рассчитываться со смещением.
4. Вследствие того, что было сказано выше, все выводы, получаемыена основе соответствующих t- и F- статистик (критериев Стьюдента и Фишера),а также интервальные оценки будут ненадежными. Значит, статистические выводы, которые получаются при стандартных проверках качества оценок, могутбыть ошибочными и приводить к неверным выводам по построенной модели.Вполне вероятно, что стандартные ошибки коэффициентов будут занижены,следовательно, t-статистики будут завышены. Это может приводить к признанию статистически значимыми коэффициентов, таковыми на самом деле не являющихся.
