- •2. Автокорреляция случайных возмущений: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях автокорреляции
- •3.Алгоритм проверки адекватности множественной регрессионной модели
- •4. Алгоритм проверки значимости регрессоров в множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики
- •5. Анализ влияния факторов на зависимую переменную по модели регрессии
- •6. Анализ матрицы коэффициентов парной корреляции. Проверка значимости коэффициентов корреляции
- •7. Способы включения случайного возмущения в спецификацию нелинейной модели
- •8. Гетероскедастичность случайного возмущения: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях гетероскедастичности
- •9. Диагностика эконометрических моделей: тестирование гетероскедастичности случайного возмущения (тест Голдфельда-Квандта)
- •10. Диагностика эконометрических моделей: тестирование гетероскедастичности случайного возмущения (тест Уайта)
- •11. Диагностика эконометрических моделей: тестирование значимости структурных изменений в экономике (тест Чоу)
- •12. Диагностика эконометрических моделей: тестирование функциональной формы (тест Рэмси reset)
- •13. Классификация эконометрических моделей для панельных данных
- •14. Классическая множественная регрессионная модель: спецификация, предпосылки
- •15. Классическая множественная регрессионная модель: числовые характеристики вектора мнк-оценок параметров.
- •16. Классическая множественная регрессионная модель: числовые характеристики вектора оценок эндогенной переменной
- •17. Классическая множественная регрессионная модель: числовые характеристики вектора ошибок прогнозов
- •19. Линейно-вероятностная модель с дискретной зависимой переменной. Спецификация модели
- •20. Матричная форма метода наименьших квадратов: спецификация множественной регрессионной модели в матричной форме, вывод оценки вектора параметров модели
- •21. Методы обнаружения мультиколлинеарности
- •22. Модели бинарного выбора. Логит и пробит модели
- •23. Модель панельных данных со случайными эффектами
- •24. Объединённая модель панельных данных
- •25. Модели для панельных данных: типы моделей
- •26. Модель бинарного выбора: Спецификация модели. Оценка параметров модели методом максимального правдоподобия
- •Линейно-вероятностная модель (lpm-Linear Probability Model)
- •27. Мультиколлинеарность и методы ее устранения
- •28. Обобщенный метод наименьших квадратов
- •29. Обобщенный метод наименьших квадратов структурных изменений в экономике: использование фиктивных переменных, тест Чоу
- •30. Определение структурных изменений в экономике: использование фиктивных переменных, тест Чоу
- •31. Основные числовые характеристики вектора остатков в классической множественной регрессионной модели. Оценка дисперсии возмущений модели множественной регрессии
- •32. Основные этапы эконометрического моделирования
- •Сбор статистической информации об объекте исследования
- •Оценка параметров модели (параметризация, настройка)
- •Проверка адекватности модели (верификация)
- •33. Оценка параметров парной регрессионной модели методом наименьших квадратов (суть метода, вывод формул для нахождения оценок коэффициентов через систему нормальных уравнений)
- •35. Показатели качества модели: коэффициент детерминации (обычный, скорректированный)
- •36. Пошаговые процедуры отбора факторов в модель регрессии
- •38. Проблема мультиколлинеарности в моделях множественной регрессии. Виды мультиколлинеарности, признаки, последствия
- •39. Проблема мультиколлинеарности в моделях множественной регрессии: полная мультиколлинеарность (определение, последствия, пример способа устранения)
- •40. Последствия и признаки частичной мультиколлинеарности
- •41. Прогнозирование на основе модели множественной регрессии
- •42. Свойства оценок мнк (определения и смысл)
- •43. Структурная и приведённая формы спецификации эконометрических моделей
- •44. Схема проведения эконометрических исследований (краткая характеристика каждого этапа)
- •46. Тест Бреуша-Годфри на наличие (отсутствие) автокорреляции случайных возмущений: предпосылки, нулевая гипотеза, тестовая статистика, алгоритм
- •47. Тест Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений: предпосылки, нулевая гипотеза, тестовая статистика, алгоритм
- •48. Тестирование мультиколлинеарности. Метод Фаррара-Глоубера
- •49. Типы нелинейности эконометрических моделей. Оценивание эконометрических моделей нелинейных по переменным
- •51. Модель Кобба-Дугласа. Оценка линеаризуемой нелинейной модели и проверка ее адекватности.
- •52. Типы переменных в эконометрических моделях. Типы экономических моделей (примеры)
- •Модели временных рядов;
- •Регрессионные модели с одним уравнением;
- •Системы одновременных уравнений
- •53. Фиктивные переменные наклона. Спецификация моделей. Примеры
- •54. Фиктивные переменные: определение, назначение, типы (спецификация, смысл параметра при фиктивной переменной)
- •55. Эконометрическое исследование: определение, задача, цель, метод. Назначение эконометрических моделей
- •56. Доступный метод взвешенных наименьших квадратов: способ корректировки переменных; числовые характеристики возмущений в преобразованной модели
- •57. Способы корректировки автокорреляции: алгоритм метода Кохрейна-Оркатта.
- •58. Способы корректировки автокорреляции: алгоритм метода Хилдрета-Лу
- •59. Способы корректировки автокорреляции: поправка Прайса-Уинстона в авторегрессионной схеме первого порядка
- •60. Методы обнаружения мультиколлинеарности. Метод дополнительных регрессий
6. Анализ матрицы коэффициентов парной корреляции. Проверка значимости коэффициентов корреляции
Линейный корреляционный анализ позволяет установить прямые связи между переменными величинами по их абсолютным значениям. Формула расчета коэффициента корреляции построена таким образом, что если связь между признаками имеет линейный характер, коэффициент Пирсона точно устанавливает тесноту этой связи. Поэтому он называется также коэффициентом линейной корреляции Пирсона.
В общем виде формула для подсчета коэффициента корреляции такова:
где
-
значения, принимаемые переменной X,
-
значения, принимаемые переменой Y,
-
средняя по X,
-
средняя по Y.
Расчет
коэффициента корреляции Пирсона
предполагает, что переменные
и
распределены
нормально.
Матрица парных коэффициентов корреляции представляет собой матрицу, элементами которой являются парные коэффициенты корреляции всех факторов модели.
Для вычисления матрицы коэффициентов парной корреляции R следует воспользоваться инструментом Корреляция. Инструмент Корреляция применяется, если имеется более двух переменных измерений для каждого объекта. В результате выдается таблица, корреляционная матрица, показывающая значение функции КОРРЕЛ для каждой возможной пары переменных измерений. Любое значение коэффициента корреляции должно находиться в диапазоне от -1 до +1 включительно.
По величине парных коэффициентов корреляции обнаруживается лишь явная коллинеарность факторов. Наибольшие трудности при использовании множественной регрессии возникают при наличии мультиколлинеарности факторов, когда более чем два фактора связаны между собой линейной зависимостью, т.е. имеет место совокупное воздействие факторов друг на друга. Наличие мультиколлинеарности факторов может означать, что некоторые факторы будут всегда действовать в унисон. В результате вариация в исходных данных перестаёт быть полностью независимой и нельзя оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарность факторов, тем менее надёжна оценка распределения суммы объяснённой вариации по отдельным факторам с помощью МНК.
Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между векторами
Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной матрицей, поскольку все недиагональные элементы гxi,xj (xi ¹ xj) были бы равны нулю. Так, для включающего три объясняющих переменных уравнения
yteor = b0+b1×x1 + b2×x2 + b3×x3 + ε (5.12)
матрица коэффициентов корреляции между факторами имела бы определитель, равный 1
det(R)=
.
Если же, наоборот, между факторами существует полная линейная зависимость и все коэффициенты корреляции = 1, то определитель такой матрицы равен нулю:
Det(R)
=
.
Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадёжнее результаты множественной корреляции. Наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.
Проверка гипотезы для коэффициента корреляции
Пусть r обозначает выборочный коэффициент корреляции, полученный по извлеченным из двумерного нормального распределения пар наблюдений (x1, y1),…,(xn, yn).
Коэффициент
корреляции
в
популяции неизвестен, но может быть
оценен по выборке с помощью выборочного
коэффициента корреляции r:
(1)
где оценки среднего равны:
.
Проверим значимость коэффициента корреляции.
Нулевая гипотеза состоит в том, что коэффициент корреляции равен нулю, альтернативная - не равен нулю:
Очевидно, достаточно большое по абсолютной величине значение величины r будет стремиться опровергнуть нулевую гипотезу.
Возникает вопрос.
Насколько большое должно быть абсолютное значение величины r?
Для того чтобы проверить гипотезу, мы должны знать распределение величины r.
Собственное распределение величины r довольно сложное, поэтому мы применим преобразование:
(2)
Итак, выборочное распределение этой статистики есть распределение Стьюдента с n-2 степенями свободы.
При заданном уровне значимости (α) определяем критическое значение tкр.
Принимаем решение об отклонении или не отклонении нулевой гипотезы:
-
отклоняем H0
-
не отклоняем H0
Вычисление уровня значимости коэффициента корреляции
Для определения фактического уровня значимости коэффициента корреляции запишем:
Где Т подчиняется распределению Стьюдента с n-2 степенями свободы, а значение величины t вычисляется в соответствии с формулой (2).
Вычисление уровня значимости эквивалентно определению площади под правым и левым хвостами функции, ограниченной значениями -t и t.
