- •2. Автокорреляция случайных возмущений: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях автокорреляции
- •3.Алгоритм проверки адекватности множественной регрессионной модели
- •4. Алгоритм проверки значимости регрессоров в множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики
- •5. Анализ влияния факторов на зависимую переменную по модели регрессии
- •6. Анализ матрицы коэффициентов парной корреляции. Проверка значимости коэффициентов корреляции
- •7. Способы включения случайного возмущения в спецификацию нелинейной модели
- •8. Гетероскедастичность случайного возмущения: определение, причины, последствия, количественные характеристики вектора случайных возмущений в условиях гетероскедастичности
- •9. Диагностика эконометрических моделей: тестирование гетероскедастичности случайного возмущения (тест Голдфельда-Квандта)
- •10. Диагностика эконометрических моделей: тестирование гетероскедастичности случайного возмущения (тест Уайта)
- •11. Диагностика эконометрических моделей: тестирование значимости структурных изменений в экономике (тест Чоу)
- •12. Диагностика эконометрических моделей: тестирование функциональной формы (тест Рэмси reset)
- •13. Классификация эконометрических моделей для панельных данных
- •14. Классическая множественная регрессионная модель: спецификация, предпосылки
- •15. Классическая множественная регрессионная модель: числовые характеристики вектора мнк-оценок параметров.
- •16. Классическая множественная регрессионная модель: числовые характеристики вектора оценок эндогенной переменной
- •17. Классическая множественная регрессионная модель: числовые характеристики вектора ошибок прогнозов
- •19. Линейно-вероятностная модель с дискретной зависимой переменной. Спецификация модели
- •20. Матричная форма метода наименьших квадратов: спецификация множественной регрессионной модели в матричной форме, вывод оценки вектора параметров модели
- •21. Методы обнаружения мультиколлинеарности
- •22. Модели бинарного выбора. Логит и пробит модели
- •23. Модель панельных данных со случайными эффектами
- •24. Объединённая модель панельных данных
- •25. Модели для панельных данных: типы моделей
- •26. Модель бинарного выбора: Спецификация модели. Оценка параметров модели методом максимального правдоподобия
- •Линейно-вероятностная модель (lpm-Linear Probability Model)
- •27. Мультиколлинеарность и методы ее устранения
- •28. Обобщенный метод наименьших квадратов
- •29. Обобщенный метод наименьших квадратов структурных изменений в экономике: использование фиктивных переменных, тест Чоу
- •30. Определение структурных изменений в экономике: использование фиктивных переменных, тест Чоу
- •31. Основные числовые характеристики вектора остатков в классической множественной регрессионной модели. Оценка дисперсии возмущений модели множественной регрессии
- •32. Основные этапы эконометрического моделирования
- •Сбор статистической информации об объекте исследования
- •Оценка параметров модели (параметризация, настройка)
- •Проверка адекватности модели (верификация)
- •33. Оценка параметров парной регрессионной модели методом наименьших квадратов (суть метода, вывод формул для нахождения оценок коэффициентов через систему нормальных уравнений)
- •35. Показатели качества модели: коэффициент детерминации (обычный, скорректированный)
- •36. Пошаговые процедуры отбора факторов в модель регрессии
- •38. Проблема мультиколлинеарности в моделях множественной регрессии. Виды мультиколлинеарности, признаки, последствия
- •39. Проблема мультиколлинеарности в моделях множественной регрессии: полная мультиколлинеарность (определение, последствия, пример способа устранения)
- •40. Последствия и признаки частичной мультиколлинеарности
- •41. Прогнозирование на основе модели множественной регрессии
- •42. Свойства оценок мнк (определения и смысл)
- •43. Структурная и приведённая формы спецификации эконометрических моделей
- •44. Схема проведения эконометрических исследований (краткая характеристика каждого этапа)
- •46. Тест Бреуша-Годфри на наличие (отсутствие) автокорреляции случайных возмущений: предпосылки, нулевая гипотеза, тестовая статистика, алгоритм
- •47. Тест Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений: предпосылки, нулевая гипотеза, тестовая статистика, алгоритм
- •48. Тестирование мультиколлинеарности. Метод Фаррара-Глоубера
- •49. Типы нелинейности эконометрических моделей. Оценивание эконометрических моделей нелинейных по переменным
- •51. Модель Кобба-Дугласа. Оценка линеаризуемой нелинейной модели и проверка ее адекватности.
- •52. Типы переменных в эконометрических моделях. Типы экономических моделей (примеры)
- •Модели временных рядов;
- •Регрессионные модели с одним уравнением;
- •Системы одновременных уравнений
- •53. Фиктивные переменные наклона. Спецификация моделей. Примеры
- •54. Фиктивные переменные: определение, назначение, типы (спецификация, смысл параметра при фиктивной переменной)
- •55. Эконометрическое исследование: определение, задача, цель, метод. Назначение эконометрических моделей
- •56. Доступный метод взвешенных наименьших квадратов: способ корректировки переменных; числовые характеристики возмущений в преобразованной модели
- •57. Способы корректировки автокорреляции: алгоритм метода Кохрейна-Оркатта.
- •58. Способы корректировки автокорреляции: алгоритм метода Хилдрета-Лу
- •59. Способы корректировки автокорреляции: поправка Прайса-Уинстона в авторегрессионной схеме первого порядка
- •60. Методы обнаружения мультиколлинеарности. Метод дополнительных регрессий
47. Тест Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений: предпосылки, нулевая гипотеза, тестовая статистика, алгоритм
Модель называется автокоррелированной, если не выполняется третья предпосылка теоремы Гаусса-Маркова: Cov(ui,uj)≠0 при i≠j. Т.е. между ними есть зависимость.
Тест Дарбина-Уотсона рассматривает случай взаимного влияния случайных возмущений в соседних наблюдениях:
Cov(ui,uj) = 0 ghb j = i - 1
В основе теста лежат следующие предположения:
-
случайные возмущения подчиняютя
нормальному закону распределения
- тип автокорреляции - автокорреляция первого порядка
Тест основан на вычислении статистики DW:
i - номер наблюдения
n - кол-во наблюдений
u - значение случайного возмущения
Принято во внимание, что при достаточно больших значениях n, можно записать уравнение следующим образом:
DW
= 2(1- p),
так как
Для принятия решения относительно наличия или отсутствия автокорреляции нужно понять к какому отрезку относится DW
Если значение попало на отрезки [0; dl] или [4-dl; 4], то гипотеза б отсутствии автокорреляции отклоняется (присутствует автокорреляция). Если на отрезок [du; 4-du], то гипотеза об отсутствии автокорреляции принимается. 2 другие зоны - зоны неопределенности.
Алгоритм:
1)Yоцен = а0оцен +а1оцен*х1t+...
2) Вычисление статистики DW
3)
Выбор табличных значений границ
критического значения статистики
и
(по параметрам n,
k,
)
4) Определение интервала, в который попадает вычисленное значение статистики DW.
48. Тестирование мультиколлинеарности. Метод Фаррара-Глоубера
Если регрессоры в модели связаны строгой функциональной зависимостью, то говорят о наличии полной (совершенной) мультиколинеарности
Полная мультиколлинеарность не позволяет однозначно оценить параметры исходной модели и разделить вклады регрессоров в эндогенную переменную по результатам наблюдений.
Частичная мультиколлинеарность характеризуется коэффициентами парной корреляции между регрессорами, которые так же носят стохастический характер и, по значениям которых судят о степени коррелированности.
Исследование наличия мультиколлинеарности по алгоритму Феррара-Глобера.
Шаг 1. Стандартизация переменных.
Элементы стандартизованных векторов рассчитываются по формулам:
,
i=1; n, j=1; m.
где n – число наблюдений;
m – число факторов;
σj2 – дисперсия j-го фактора.
Поскольку дисперсия рассчитывается по формуле:
,
то формуле для стандартизации переменных примут вид:
,
i=1; n, j=1; m.
Шаг 2. Нахождение корреляционной матрицы R (матрицы моментов стандартизованной системы нормальных уравнений).
Корелляционная матрица R определяется по формуле:
R=Х*Т·Х*,
где Х* – матрица стандартизованных переменных.
Для нахождения элементов корелляционной матрицы R последовательно используем встроенные функции Транспонирование матриц – ТРАНСП и Произведение матриц – МУМНОЖ.
Проверку вычислений следует выполнять, и используя последовательно встроенную функцию КОРРЕЛ, учитывая при этом свойства корреляционной матрицы: корреляционная матрица является симметричной, на главной диагонали расположены единицы.
Шаг 3. Критерий – Х2.
Расчетное значение критерия Х2 определяется по формуле:
,
где
-определитель
корреляционной матрицы R-детерминант
корреляции.
По заданной доверительной вероятности Р и числу степеней свободы
находится
табличное значение критерия Х2табл,
которое сравнивается с расчетным.
– если Х2расч< Х2табл, то нет оснований отклонить гипотезу об отсутствии мультиколлинеарности в массиве факторов, то есть с принятой надежностью можно утверждать, что в массиве факторов мультиколлинеарность отсутствует;
– если Х2расч> Х2табл, то гипотеза об отсутствии мультиколлинеарности в массиве факторов отклоняется, то есть с принятой надежностью можно утверждать, что в массиве факторов мультиколлинеарность существует.
Примечание: Если гипотеза об отсутствии мультиколлинеарности в массиве факторов принимается, то исследования мультиколлинеарности останавливаются.
